Variability and correlation of taxation indicators of plus trees of scots pine on a forest-seed plantation in the Vladimir region
Abstract
We studied the taxation indicators of clones of plus trees of Scots pine on a forest-seed plantation in the Kovrovsky district forestry of the Vladimir region. It was laid in 2020 by two-year-old grafted seedlings with a closed root system according to the 7×8 m placement scheme with an initial number of 3352 seats, has a total area of 22.3 hectares with a density of 178.6 pcs./ha. The design number of plus trees in the assortment is 50 units. The terrain of the site is flat, the type of forest growing conditions corresponds to category A2 with poor slightly humusized sandy soils. It belongs to the area of coniferous-broadleaf (mixed) forests of the European part of the Russian Federation and is included in the zone of coniferous-broadleaf forests. The forest growing conditions of the region are quite favorable for the growth and seed-bearing of scots pine. The purpose of the study is to evaluate the variability and correlation of the taxation indicators of the clones of plus–sized pine trees as part of a forest seed plantation on the territory of the Kovrov district forestry of the Vladimir region. The methodological basis of the research was the principles of the only logical difference, typicality, suitability, reliability and expediency of experience. The collection of forestry information was carried out by a stationary field method with a continuous enumeration of trees on the LSP. The variability of taxation indicators in vegetative offspring of plus trees was recorded both at the level of differences between groups of clones of the same name, and within each of them. The ratio of the height limits was 3.53 with the formation of a range of 43 cm; the diameter of the trunk at the root neck was 4.00 with an excess of 12 mm; the volume of the view cylinder is 36.80 with a difference of 89.98 cm3. A very high positive relationship was recorded between the trunk diameter at the root neck and the trunk cross-sectional area (r±mr = 0.988±0.007; tr = 132.40), as well as between the average crown diameter and its projection area (r±mr = 0.983±0.009; tr = 111.22). Regression analysis gave a comparable result.
About the Authors
N. N. BesschetnovaRussian Federation
97, Gagarina Av., Nizhny Novgorod, 603107
V. P. Besschetnov
Russian Federation
97, Gagarina Av., Nizhny Novgorod, 603107
A. V. Mikhalyuk
Russian Federation
97, Gagarina Av., Nizhny Novgorod, 603107
A. N. Gorelov
Russian Federation
97, Gagarina Av., Nizhny Novgorod, 603107
A. N. Ornatskiy
Russian Federation
22, Poltavskaya str., Nizhny Novgorod, 603089
References
1. Belous V.I. O neobhodimosti ocenki nasledstvennyh svojstv semjan s lesosemennyh plantacij. Lesnoe hozjajstvo. 1990, no. 3. pp. 44–46. (In Russ.).
2. Besschetnov V.P., Besschetnova N.N. Selektsionnaya otsenka plyusovykh derev'ev sosny obyknovennoy metodami mnogomernogo analiza. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2012, no. 2/326, pp. 58–64. (In Russ.).
3. Besschetnova N.N. Besschetnov V.P. Sosna obyknovennaya (Pinus sylvestris L.). Morfometriya i fiziologiya khvoi plyusovykh derev'ev. Nizhniy Novgorod, 2014, 368 p. (In Russ.).
4. Besschetnova N.N. Sosna obyknovennaya (Pinus sylvestris L.). Reproduktivnyy potentsial plyusovykh derev'ev. Nizhniy Novgorod, 2015, 586 p. (In Russ.).
5. Besschetnova N.N. Sosna obyknovennaya (Pinus sylvestris L.). Effektivnost' otbora plyusovykh derev'ev. Nizhniy Novgorod, 2016, 382 p. (In Russ.).
6. Vidjakin, A.I. Effektivnost' pljusovoj selekcii drevesnyh rastenij // Hvojnye boreal'noj zony. 2010, Vyp. XXVII, no. 1–2, pp. 18–24. (In Russ.).
7. Vysotsky, K.K. Regularities of the structure of mixed stands. Moskva: Goslesbumizdat, 1962. 178 p. (In Russ.).
8. Dancheva A.V., Pankratov V.K. Ocenka jeffektivnosti rubok uhoda v suhih sosnjakah Kazahskogo melkosopochnika // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2021, no. 2, pp. 45–55. DOI: 10.37482/0536-1036-2021-2-45-55 (In Russ.).
9. Dospehov B.A. Metodika polevogo opyta (S osnovami statisticheskoj obrabotki rezul'tatov issledovanij). Izdanie pjatoe, dopolnennoe i pererabotannoe. Moskva, 1985, 416 p. (In Russ.).
10. Efimov Ju.P. Semennye plantacii v selekcii i semenovodstve sosny obyknovennoj. Voronezh, 2010, 253 p. (In Russ.).
11. Zarubina L.V., Hamitov R.S. Sezonnyj rost sosny obyknovennoj na zabolochennyh pochvah Severa / L.V. Zarubina, // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2021, no. 3, pp. 86–100. DOI: 10.37482/0536-1036-2021-3-86-100 (In Russ.).
12. Koterov A.N., Ushenkova L.N., Zubenkova E.S., Kalinina M.V., Biryukov A.P., Lastochkina E.M., Molodtsova D.V., Vainson A.A. The power of communication. Message 2. Gradations of the correlation value // Medical Radiology and radiation Safety: Radiation Biology. 2019. Volume 64. No. 6. pp. 12–24. DOI: 10.12737/1024-6177-2019-64-6-12-24 (In Russ.).
13. Lakin G.F. Biometrija. Uchebnoe posobie dlja biologicheskih special'nostej vuzov. 3-e izdanie, pererabotannoe i dopolnennoe. Moskva, 1980, 293 p. (In Russ.).
14. Mamaev S.A. On problems and methods of intraspecific systematics of woody plants. II. Amplitude of variability // Regularities of species formation and differentiation in woody plants: Proceedings of the Institute of Plant and Animal Ecology. Sverdlovsk, 1969. pp. 3–38. (In Russ.).
15. Nakvasina E.N. Izmenenija v generativnoj sfere sosny obyknovennoj pri imitacii poteplenija klimata // Izvestija Sankt-Peterburgskoj lesotehnicheskoj akademii. 2014, Vyp. 209, pp. 114–125. (In Russ.).
16. Neronova Ja.A. Mikrostruktura drevesiny kul'tur sosny razlichnoj ishodnoj gustoty na osushennoj torfjanoj pochve posle primenenija udobrenij i gerbicidov // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2020, no. 4, pp. 68–76. DOI: 10.37482/0536-1036-2020-4-68-76 (In Russ.).
17. Nikitin K.E., Shvidenko. A.Z. Metody i tehnika obrabotki lesovodstvennoj informacii. Moskva, 1978, 272 p. (In Russ.).
18. Novosjolov A.S. Smoloproduktivnost' sosny na ob#ekte gidrotehnicheskoj melioracii posle nesploshnoj zagotovki drevesiny // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2019, no. 2, pp. 67–77. DOI: 10.17238/issn0536-1036.2019.2.67.
19. Plohinskij N.A. Biometrija. Novosibirsk, 1961, 364 p. (In Russ.).
20. Plohinskij N.A. Nasleduemost'. Novosibirsk, 1964, 195 p. (In Russ.).
21. Plohinskij N.A. Algoritmy biometrii. Moskva, 1967, 82 p. (In Russ.).
22. Pravdin L.F. Sosna obyknovennaja. Izmenchivost', vnutrividovaja sistematika i selekcija. Moskva, 1964, 190 p. (In Russ.).
23. Pravdin L.F. Napravlenie i soderzhanie rabot po izucheniju prirodnogo raznoobrazija drevesnyh porod i ih znachenie dlja lesnoj selekcii // Lesovedenie. 1967, no. 3, pp. 3–16. (In Russ.).
24. Raevskij B.V. Osobennosti vegetativnogo rosta klonov sosny obyknovennoj v Karelii // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2013, no. 4, pp. 7–15. (In Russ.).
25. Smirnov S.D. The experience of creating a permanent forest seed base. M. : Forest industry, 1977. 80 p. (In Russ.).
26. Snedekor Dzh. U. Statisticheskie metody v primenenii issledovanijam v sel'skom hozjajstve i biologi. Perevod s anglijskogo. Moskva, 1961. 503 p. (In Russ.).
27. Sungurova N.R., Drochkova A.A. Biometricheskie harakteristiki posadochnogo materiala kak test-pokazatel' uspeshnosti kul'tur Pinus silvestris L. // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2021, no. 4, pp. 107–116. DOI: 10.37482/0536-1036-2021-4-107-116. (In Russ.).
28. Tjukavina O.N. Plotnost' drevesiny sosny v osushaemyh sosnjakah kustarnichkovo-sfagnovyh // Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2020, no. 2, pp. 73–80. DOI: 10.37482/0536-1036-2020-2-73-80 (In Russ.).
29. Ulitin M.M., Besschetnov V.P. Sravnitelnaya otsenka taksatsionnykh pokazateley lesnykh kul'tur listvennitsy sibirskoy (Larix sibirica) pri introduktsii v Nizhegorodskoy oblasti. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2020, no. 6, pp. 33–41. DOI: 10.37482/0536-1036-2020-6-33-41. (In Russ.).
30. Al Afas N. Marrona N., Ceulemansa R. Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon. Annals of Forest Science. 2007, vol. 64, no. 4, pp. 521–532. DOI: 10.1051/forest:2007029.
31. Andersone U., Vinsh G. Changes of morphogenic competence in mature Pinus sylvestris L. Buds in vitro. Annals of Botany. 2002, vol. 90, is. 2, pp. 293–298. DOI: 10.1093/aob/mcf176.
32. Androsiuk P., Zielinski R., Polok K. B-SAP markers derived from the bacterial KatG gene differentiate populations of Pinus sylvestris and provide new insights into their postglacial history. Silva Fennica. 2011, vol. 45, no. 1, рр. 3–18. DOI: 10.14214/sf.29.
33. Benomar L., Lamhamedi M.S., Villeneuve I., Rainville A., Beaulieu J., Bousquet J., Margolis H.A. Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate. Tree Physioljgy. 2015, vol. 35, issue 8, pp. 864–878. DOI: 10.1093/treephys/tpv054.
34. Bohne, G., Woehlecke H., Ehwald R. Water relations of the pine exine. Annals of Botany. 2005, vol. 96, is. 2, pp. 201–208. DOI:10.1093/aob/mci169.
35. Bruce D., Reineke L.H. Correlation alinement charts in forest research. A method of solving problems in curvilinear multiple correlation. USA Department of Agriculture, Washington. Technical Bulletin № 210. February 1931. 88 p. [URL: https://naldc.nal.usda.gov/download/CAT86200204/PDF].
36. Castro J. Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Annals of Botany. 2006, vol. 98, is. 6, pp. 1233–1240. DOI: 10.1093/aob/mcl208.
37. Chaddock R.E. Principles and methods of statistics. Boston, New York: Houghton Mifflin Company. 1925. 471 p. [URL: https://openlibrary.org/works/OL7141582W/Principles_and_methods_of_statistics].
38. Fries A., Ericsson T. Genetic parameters for earlywood and latewood densities and development with increasing age in Scots pine. Annals of Forest Science. 2009, vol. 66, no. 4, article no. 404, 8 p. DOI: 10.1051/forest/2009019.
39. Gornall J.L., Guy R.D. Geographic variation in ecophysiological traits of black cottonwood (Populus trichocarpa). Canadian Journal of Botany. 2007, vol. 85, no. 12, pp. 1202–1213. DOI: 10.1139/B07-079.
40. Hallingbäck H.R., Jansson G., Hannrup B., Fries A. Which annual rings to assess grain angles in breeding of Scots pine for improved shape stability of sawn timber? Silva Fennica. 2010, vol. 44, no. 2, pp. 275–288. DOI: 10.14214/sf.154.
41. Krakau U-K., Liesebach M., Aronen T., Lelu-Walter M.A., V. Schneck Scots pine (Pinus sylvestris L.). Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Managing Forest Ecosystems. Vol. 25, chapter 4. Dordrecht, Heidelberg, New-York, London: Springer Science+Business Media, 2013, pp. 267–323. DOI 10.1007/978-94-007-6146-9_6.
42. Kroon J., Wennström U., Prescher F., Lindgren D., Mullin T.J. Estimation of clonal variation in seed cone production over time in a Scots pine (Pinus sylvestris L.) seed orchard. Silvae Genetica. 2009, vol. 58, is. 1–2, рр. 53–62. DOI: 10.1515/sg-2009-0007.
43. Leinonen I., Repo T., Hänninen H. Changing environmental effects on frost hardiness of Scots pine during dehardening. Annals of Botany. 1997, vol. 79, is. 2, pp. 133–137. DOI: 10.1006/anbo.1996.0321
44. Lindgren D., Prescher F. Optimal clone number for seed orchards with tested clones. Silvae Genetica. 2005, vol. 54, is. 2, рр. 80–92. DOI: 10.1515/sg-2005-0013.
45. Marčiulynas A., Sirgedaitė-Šėžienė V., Žemaitis P., Jansons Ā., Baliuckas V. Resistance of Scots pine half-sib families to Heterobasidion annosum in progeny field trials. Silva Fennica. 2020, vol. 54, no. 4, Article ID 10276, 17 p. DOI: 10.14214/sf.10276.
46. Peltola H., Gort J., Pulkkinen P., Gerendiain A.Z., Karppinen J., Ikonen V.-P. Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fennica. 2009, vol. 43, no. 3, pp. 339–354. DOI: 10.14214/sf.193.
47. Salminen H., Jalkanen R., Lindholm M. Summer temperature affects the ratio of radial and height growth of Scots pine in northern Finland. Annals of Forest Science. 2009, vol. 66, no. 8, Article Number 810, 9 p. DOI: 10.1051/forest/2009074.
48. Srinagesh K. The Principles of Experimental Research. Waltham, Massachusetts (United States): Butterworth-Heinemann, 2005. 432 p.
49. Vanek O., Procházková Z., Matějka K. Analysis of the genetic structure of a model Scots pine (Pinus sylvestris) seed orchard for development of management strategies. Journal of forest sciences. 2013, vol. 59, no. 10, pp. 377–387. DOI: 10.17221/39/2013-JFS.
50. Zar J.H. Biostatistical Analysis: Fifth Edition. Edinburg Gate: Pearson New International edition – Pearson Education Limited, 2014 756 p.
51. Zerbe S., Wirth P. Non-indigenous plant species and their ecological range in Central European pine (Pinus sylvestris L.) forests. Annals of Forest Science. 2006, vol. 63, no. 2, pp. 189–203. DOI: 10.1051/forest:2005111.
Review
For citations:
Besschetnova N.N., Besschetnov V.P., Mikhalyuk A.V., Gorelov A.N., Ornatskiy A.N. Variability and correlation of taxation indicators of plus trees of scots pine on a forest-seed plantation in the Vladimir region. Conifers of the boreal area. 2022;40(4):259-268. (In Russ.)