Preview

Conifers of the boreal area

Advanced search

Crown morphology of forest-forming genera of Eurasia: allometry and ranking

https://doi.org/10.53374/1993-0135-2023-6-504-514

Abstract

The study of the shape of the tree stems in traditional forest taxation has a long history, which was due to the need for an accurate assessment of the stem volume and the volume stock – the main target indicator of forestry. The study of the crown shape was not of practical interest, and attention was paid to it only in recent years due to the development of laser sensing methods, both aerial and ground ones. Plant growth strategies are reflected in the allometry of their organs, which, using scaling parameters, describes the proportions between the size of the total plant and its organs or between individual organs of the plant. The study of crown allometry reveals the necessary growth space for different tree species and provides the basis for the formation of stands in conditions of optimal density. In our work the generic allometric models of mixed type have been developed for various indicators of crown morphology using the actual data of dendrometric indicators of the stem and crown of 13 forest-forming genera of Eurasia in the amount of about  8 thousand of measurements. The independent variables of the models include both numerical (stem diameter and tree height) and qualitative (dummy) variables encoding the data belonging to a particular genus. Regression coefficients for numerical variables are significant at the level of probability p < 0,0001. For cases when there is no tree height in the source data, auxiliary models of height dependence upon stem diameter are calculated. The genera were ranked according to each of the four morphometric indicators of the crown, and the rank correlation between the distributions of genera by the shape of the stem and crown as well as the correlation between the distributions by morphometric indicators of the crown was calculated. 

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

37, Siberian tract, Yekaterinburg, 620100;

202a, 8 Marta Str., Yekaterinburg, 620144.



I. S. Tsepordey
Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

202a, 8 Marta Str., Yekaterinburg, 620144.



References

1. Загреев В. В. Всеобщие таблицы хода роста нормальных сосновых древостоев // Современное лесоустройство и таксация леса : сб. науч. трудов. Вып. 4. М. : ВНИИЛМ, 1974. С. 61–107.

2. Загреев В. В., Сухих В. И., Швиденко А. З. и др. Общесоюзные нормативы для таксации лесов. М. : Колос, 1992. 494 с.

3. Лиепа И. Я. Динамика древесных запасов: прогнозирование и экология. Рига : Зинатне, 1980. 170 с.

4. Митропольский А. К. Техника статистических вычислений. М. : Наука, 1971. 576 с.

5. Парамонов А. А., Третьяков С. В., Коптев С. В. Таблицы хода роста нормальных ивовых древостоев таёжной зоны северо-востока европейской части России // Труды Санкт-Петербургского научно-исследо- вательского института лесного хозяйства. 2021. Т. 2. С. 17–27.

6. Парамонов А. А., Усольцев В. А., Третьяков С. В. и др. Биомасса деревьев ивы и ее аллометрические модели в условиях Архангельской области // Леса России и хозяйство в них. 2022. № 4. С. 10–19.

7. Сеннов С. Н. О методике моделирования производительности // Моделирование и контроль производительности древостоев. Каунас : ЛитСХА, 1983. С. 44–46.

8. Усольцев В. А. Формирование ствола у березы семенного и порослевого происхождения в аспекте аллометрического роста // Вестник сельскохозяйственной науки Казахстана. 1976. № 7. С. 83–88.

9. Усольцев В. А. Оценка формы и полнодревесности стволов с использованием множественных связей // Вестник сельскохозяйственной науки Казахстана. 1984. № 7. С. 75–79.

10. Усольцев В. А. Продукционные показатели и конкурентные отношения деревьев. Исследование зависимостей. Екатеринбург: УГЛТУ, 2013. 553 с. (http://elar.usfeu.ru/handle/123456789/2627).

11. Усольцев В. А. Биологическая продуктивность лесообразующих пород в климатических градиентах Евразии (к менеджменту биосферных функций лесов). Екатеринбург : Уральский государственный лесотехнический университет, 2016. 384 с. (http://elar.usfeu.ru/handle/123456789/5634).

12. Усольцев В. А. Фитомасса модельных деревьев лесообразующих пород Евразии: база данных, климатически обусловленная география, таксационные нормативы. Екатеринбург: Уральский государственный лесотехнический университет, 2016. 336 с. (http://elar.usfeu.ru/handle/123456789/5696).

13. Усольцев В. А. Фитомасса модельных деревьев для дистанционной и наземной таксации лесов Евразии. Электронная база данных : монография. 3-е изд., доп. Екатеринбург : Ботанический сад УрО РАН, Уральский государственный лесотехнический университет, 2023. 1 электрон. опт. диск (CD-ROM). (https://elar.usfeu.ru/handle/123456789/12451).

14. Усольцев В. А., Цепордей И. С., Парамонов А. А. и др. Сравнительный мета-анализ аллометрических моделей биомассы быстрорастущих лиственных пород // Биосфера. 2023. Т. 15(1). С. 7–20.

15. Усольцев В. А., Цепордей И. С., Норицин Д. В. Ранжирование лесообразующих родов Евразии по сбежистости (относительной высоте) ствола // Хвойные бореальной зоны. 2023. Т. 41(2). С. 175–184.

16. Фалалеев Э. Н., Поляков В. С. Ход роста модальных древостоев пихты Ангарского района. В кн.: Ход роста основных лесообразующих пород Сибири. Красноярск : СибТИ, 1975. С. 125.

17. Bartkowicz L., Paluch J. Morphological plasticity of six tree species with different light demands growing in multi-layered deciduous forests in Central Europe // European Journal of Forest Research. 2023. Vol. 142(5). P. 1177–1195.

18. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2. P. 49–53.

19. Basuki T. M., Van Laake P. E., Skidmore A. K. et al. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests // Forest Ecology and Management. 2009. Vol. 257. P. 1684–1694.

20. Brooks J. R., Jiang L., Ozcelik R. Compatible stem volume and taper equations for Brutian pine, cedar of Lebanon, and cilicica fir in Turkey // Forest Ecology and Management. 2008. Vol. 256(1). P. 147–151.

21. Campos M. B., Litkey P., Wang Y. et al. Longterm terrestrial laser scanning measurement station to continuously monitor structural and phenological dynamics of boreal forest canopy // Frontiers in Plant Science. 2021. Vol. 11. Article 606752.

22. Enquist B. J., Brown J. H., West G. B. Allometric scaling of plant energetics and population density // Nature. 1998. Vol. 395. P. 163–165.

23. Erteld W. Groesse und Entwicklung des h/dWertes in Kieferbestaenden // Allgemeine Forst- und Jagdzeitung. 1979. Vol. 150. P. 72–75.

24. Forrester D. I., Benneter A., Bouriaud O. et al. Diversity and competition influence tree allometric relationships–developing functions for mixed-species forests // Journal of Ecology. 2017. Vol. 105. P. 761–774.

25. Fu L. Y., Zeng W. S., Tang S. Z. et al. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China // Journal of Forest Science. 2012. Vol. 58(3). P. 101–115.

26. Gould S. Allometry and size in ontogeny and phylogeny // Biological Reviews. 1966. Vol. 41. P. 587– 640.

27. Gray H. R. The form and taper of forest tree stems. Institute paper 32, Imperial Forestry Institute, University of Oxford, 1956. 78 p.

28. Guo L., Wu Y., Deng L. et al. A feature-level point cloud fusion method for timber volume of forest stands estimation // Remote Sensing. 2023. Vol. 15. Article 2995.

29. Hjelm B. Stem taper equations for poplars growing on farmland in Sweden // Journal of Forestry Research (Harbin). 2013. Vol. 24. P. 15–22.

30. Hosoda K., Iehara T. Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan // Journal of Forestry Research. 2010. Vol. 15(5). P. 299–306.

31. Hulshof C. M., Swenson N. G., Weiser M. D. Tree height-diameter allometry across the United States // Ecology and Evolution. 2015. Vol. 5. P. 1193–1204.

32. Jenkins J. C., Chojnacky D. C., Heath L. S. et al. Comprehensive database of diameter-based regressions for North American tree species. USDA Forest Service Northeastern Research Station. General Technical Report NE-319, 2004. 48 p.

33. Jucker T., Caspersen J., Chave J. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes // Global Change Biology. 2017. Vol. 23. P. 177–190.

34. Jucker T., Fischer F. J., Chave J. et al. Tallo: a global tree allometry and crown architecture database // Global Change Biology. 2022. Vol. 28. P. 5254–5268.

35. Knoke T., Ammer C., Stimm B. et al. Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics // European Journal of Forest Research. 2008. Vol. 127. P. 89–101.

36. Krajnc L., Farrelly N., Hartea A.M. The influence of crown and stem characteristics on timber quality in softwoods // Forest Ecology and Management. 2019. Vol. 435. P. 8–17.

37. Luo Y., Wang X., Ouyang Z. et al. A review of biomass equations for China's tree species // Earth System Science Data. 2020. Vol. 12(1). P. 21–40. DOI: 10.5194/essd-12-21-2020.

38. Meunier F., Moorthy S. M. K., Peaucelle M. et al. Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2) // Geoscientific Model Development. 2022. Vol. 15(12). P. 4783–4803.

39. Muukkonen P., Mäkipää R. Biomass equations for European trees: Addendum // Silva Fennica. 2006. Vol. 40(4). P. 763–773.

40. Neuville R., Bates J. S., Jonard F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning // Remote Sensing. 2021. Vol. 13. Article 352.

41. Owen H. J., Flynn W. R., Lines E. R. Competitive drivers of interspecific deviations of crown morphology from theoretical predictions measured with terrestrial laser scanning // Journal of Ecology. 2021. Vol. 109. P. 2612–2628.

42. Poorter H., Jagodzinski A. M., Ruiz-Peinado R. et al. How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents // New Phytologist. 2015. Vol. 208(3). P. 736–749.

43. Pretzsch H., Rais A. Wood quality in complex forests versus even-aged monocultures: Review and perspectives // Wood Science and Technology. 2016. Vol. 50. P. 845–880.

44. Pretzsch H. The effect of tree crown allometry on community dynamics in mixed-species stands versus monocultures. A review and perspectives for modeling and silvicultural regulation // Forests. 2019. Vol. 10(9). Article 810.

45. Schmucker J., Uhl E., Steckel M. et al. Crown allometry and growing space requirements of four rare domestic tree species compared to oak and beech: implications for adaptive forest management // European Journal of Forest Research. 2022. Vol.141. P. 587–604.

46. Usoltsev V. A., Zukow W., Osmirko A. A. et al. Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia // Ecological Questions. 2019. Vol. 30(2). P. 57–67.

47. Verbeek H., Bauters M., Jackson T. et al. Time for a plant structural economics spectrum // Frontiers in Global Change. 2019. Vol. 2. Article 43.

48. West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology // Science. 1997. Vol. 276. P. 122–126.

49. West G. B., Brown J. H., Enquist B. J. A general model for the structure and allometry of plant vascular system // Nature. 1999. Vol. 400. P. 664–667.

50. White E. P., Ernest S. M., Kerkho A. J. et al. Relationships between body size and abundance in ecology // Trends in Ecology and Evolution. 2007. Vol. 22. P. 323–330.

51. Whitfield J. All creatures great and small // Nature. 2001. Vol. 413. P. 342–344.

52. Wright W. G. Investigation of taper as a factor in measurement of standing timber // Journal of Forestry. 1923. Vol. 21. P. 569–581.

53. Yang Q., Su Y., Hu T. et al. Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes // Forest Ecosystems. 2022. Vol. 9. Article 100059.


Review

For citations:


Usoltsev V.A., Tsepordey I.S. Crown morphology of forest-forming genera of Eurasia: allometry and ranking. Conifers of the boreal area. 2023;41(6):504-514. (In Russ.) https://doi.org/10.53374/1993-0135-2023-6-504-514

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)