Preview

Conifers of the boreal area

Advanced search

The use of chloroprene, piperylene and isoprene latexes in the manufacture of paper-like materials

https://doi.org/10.53374/1993-0135-2024-4-82-88

Abstract

The aim of the study is influence of concentration and nature of synthetic chloroprene, piperylene and isoprene latexes on the physical and mechanical properties of a paper‒like material based on mineral fibers. The methodology of the work was in the manufacture and testing of laboratory samples of asbestos cardboard castings obtained from the composition, wt. h.: 100 ‒ asbestos fiber grade M-4-20; 5‒60 ‒ latexes: chloroprene L-7; piperylene PNK-33/2; isoprene SLIN-40, for sizing asbestos fiber grade M-4-20; 3‒6 was aluminum sulfate as a coagulant. The mechanical and hydrophobic properties of the obtained material are characterized by the physico-mechanical parameters: breaking length (L, m); tear resistance (E, mN); penetration resistance (Po, kPa); absorbency with unilateral wetting (G, g/m2); capillary absorbency (B, mm); degree of sizing (C, s/mm). Results of the work are: With an increase in the content of PNK-33/2 in the initial mass (5‒40 wt.h.), the breaking length increases. Tearing and punching resistance is: L, m/E, mN/ Po, kPa = (330‒380)–(550‒626)/(930‒1660)–(2600)/(15‒29)–(35‒40). The strength of castings with SLIN-40 practically does not depend on the binder content (10‒60 wt.h.), varying in intervals at the concentration of coagulant (3‒6 wt.h.): L, m / E, mN / Po, kPa = (160‒200)–(180‒240)/(1600‒1700)–(1300‒1700)/(15‒17)–(17‒24). The hydrophobic properties of the finished material with PNK-33/2 and SLIN-40 are quite high and increase with the growth in the binder content in the initial mass (10‒40 wt.h.) at a concentration of coagulant (3‒6 wt.h.) in the intervals: G, g/m2 / V, mm / S, s/ mm = (2,0–0,3)–(1,8–1,0)/(2,0–0,5)–(1,5–0,3)/(100‒1500)–(150‒1200). Conclusions: a material with high strength and hydrophobic properties can be obtained using latex 30‒40 wt.h. PNK-33/2 and 3‒4 wt.h. Al2(SO4)3

About the Authors

G. I. Maltsev
Ural State Forestry Engineering University
Russian Federation

37, Siberian tract, Yekaterinburg, 620100



Y. L. Yuryev
Ural State Forestry Engineering University
Russian Federation

37, Siberian tract, Yekaterinburg, 620100



References

1. Bagchi S. K., Patnaik R., Rawat I. Beneficiation of paper-pulp industrial wastewater for improved outdoor biomass cultivation and biodiesel production using Tetradesmus obliquus (Turpin) Kützing. Renewable Energy. 2024. Vol. 222. 119848. DOI: 10.1016/j.renene.2023.119848.

2. Sharma D., Sahu S., Singh G. An eco-friendly process for xylose production from waste of pulp and paper industry with xylanase catalyst. Sustainable Chemistry for the Environment. 2023. Vol. 3. 100024. DOI: 10.1016/j.scenv.2023.100024.

3. Steephen A., Preethi V., Annenewmy B. Solar photocatalytic hydrogen production from pulp and paper wastewater. International Journal of Hydrogen Energy. 2024. Vol. 52. Part A. P. 1393‒1404. DOI: 10.1016/j.ijhydene.2023.03.381.

4. Romaní A., Del-Río P.G., Rubira A. Covalorization of discarded wood pinchips and sludge from the pulp and paper industry for production of advanced biofuels. Industrial Crops and Products. 2024. Vol. 209. 117992. DOI: 10.1016/j.indcrop.2023.117992.

5. Yang M., Li J., Wang S. Status and trends of enzyme cocktails for efficient and ecological production in the pulp and paper industry. Journal of Cleaner Production. 2023. Vol. 418. 138196. DOI:10.1016/j.jclepro.2023.138196.

6. Axelrod L., Charron P., Tahir I. The effect of pulp production times on the characteristics and properties of hemp-based paper. Materials Today Communications. 2023. Vol. 34. 104976. DOI:10.1016/j.mtcomm.2022.104976.

7. Deryagin B. V., Churaev M. V., Muller V. M. Poverxnostny`e sily`. M. : Nauka, 1985. 398 s. (In Russ.)

8. Elovenko D., Kräusel V. The study of thermal conductivity of asbestos cardboard and fire clay powder to assess the possibility of their application in prefabricated structures of cylindrical housings of pressure vessels. Materials Today: Proceedings. 2019. Vol. 19. Part 5. P. 2389‒2395. DOI: 10.1016/j.matpr.2019.08.041.

9. Modica G., Giuffre L., Montoneri E. Electrolytic separators from asbestos cardboard: A flexible technique to obtain reinforced diaphragms or ion-selective membranes. International Journal of Hydrogen Energy. 1983. Vol. 8. Iss. 6. P. 419‒435. DOI: 10.1016/0360-3199(83)90163-5.

10. Obmiński A. Asbestos in building and its destruction. Construction and Building Materials. 2020. Vol. 249. 118685. DOI: 10.1016/j.conbuildmat.2020.118685.

11. Akylbekov Y., Shevko V., Karatayeva G. Thermodynamic prediction of the possibility of comprehensive processing chrysotile-asbestos waste. Case Studies in Chemical and Environmental Engineering. 2023. Vol. 8. 100488. DOI: 10.1016/j.cscee.2023.100488.

12. Avataneo C., Petriglieri J.R., Capella S. Chrysotile asbestos migration in air from contaminated water: An experimental simulation. Journal of Hazardous Materials. 2022. Vol. 424. Part C. 127528. DOI: 10.1016/j.jhazmat.2021.127528.

13. Tan Y., Zou Z., Qu J. Mechanochemical conversion of chrysotile asbestos tailing into struvite for full elements utilization as citric-acid soluble fertilizer. Journal of Cleaner Production. 2021. Vol. 283. 124637. DOI: 10. 1016/j.jclepro.2020.124637.

14. Castoldi R. S., Liebscher M., Souza L. M. S. Effect of polymeric fiber coating on the mechanical performance, water absorption, and interfacial bond with cement-based matrices. Construction and Building Materials. 2023. Vol. 404. 133222. DOI: 10.1016/j.conbuildmat.2023.133222.

15. Bakatovich A., Gaspar F., Boltrushevich N. Thermal insulation material based on reed and straw fibres bonded with sodium silicate and rosin. Construction and Building Materials. 2022. Vol. 352. 129055. DOI: 10.1016/j.conbuildmat.2022.129055.

16. Geng Y., Nie Y., Du H. Coagulation performance and floc characteristics of Fe–Ti–V ternary inorganic coagulant for organic wastewater treatment. Journal of Water Process Engineering. 2023. Vol. 56. 104344. DOI: 10.1016/j.jwpe.2023.104344.

17. Yi J., Chen Z., Xu D. Preparation of a coagulant of polysilicate aluminum ferric from foundry dust and its coagulation performance in treatment of swine wastewater. Journal of Cleaner Production. 2024. Vol. 434. 140400. DOI: 10. 1016/j.jclepro.2023.140400.

18. Zeng H., Tang H., Sun W. Deep dewatering of bauxite residue via the synergy of surfactant, coagulant, and flocculant: Effect of surfactants on dewatering and settling properties. Separation and Purification Technology. 2022. Vol. 302. 122110. DOI: 10.1016/j.seppur.2022.122110.

19. Chen J., Li X., Cai W. High-efficiency extraction of aluminum from low-grade kaolin via a novel lowtemperature activation method for the preparation of polyaluminum-ferric-sulfate coagulant. Journal of Cleaner Production. 2020. Vol. 257. 120399. DOI: 10.1016/j.jclepro.2020.120399.

20. Şengı̇l A. The utilization of alunite ore as a coagulant aid. Water Research. 1995. Vol. 29. Iss. 8. P. 1988‒1992. DOI: 10.1016/0043-1354(94)00534-E.

21. Gubarev A. A. Proklejka bumagi i kartona v nejtral`noj srede s ispol`zovaniem sernokislogo alyuminiya : avtoref. dis. … kand. texn. nauk: 05.21.03. Minsk, 2000. 23 s.

22. Moskvitin N. I. Fiziko-ximicheskie osnovy` processov skleivaniya i prilipaniya. M. : Lesnaya promy`shlennost`, 1974. 192 s.

23. E`ngel`gardt G., Granich K., Ritter K. Proklejka bumagi. M. : Lesnaya promy`shlennost`, 1975. 224 s.

24. Flyate D. M. Svojstva bumagi. M. : Lesnaya promy`shlennost`, 1986. 680 s.

25. Dubovy`j V. K. Bumagopodobny`e kompozicionny`e materialy` na osnove mineral`ny`x volokon : dis. … dokt. texn. nauk: 05.21.03. Sankt-Peterburg, 2006. 370 s.

26. Mashiny`, processy` i oborudovanie cellyuloznobumazhny`x proizvodstv: Sbornik statej. Vy`p. 29 / otv. red. A. I. Brodoczkij. Leningrad : LTI CzBP, 1973. 185 s.

27. Erkova L. N., Chechik O. S. Lateksy`. L. : Ximiya, 1983. 224 s.


Review

For citations:


Maltsev G.I., Yuryev Y.L. The use of chloroprene, piperylene and isoprene latexes in the manufacture of paper-like materials. Conifers of the boreal area. 2024;42(4):82–88. (In Russ.) https://doi.org/10.53374/1993-0135-2024-4-82-88

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)