Preview

Conifers of the boreal area

Advanced search

Physical and mechanical characteristics of wood-polymer composite material based on hydrolyzed wood

Abstract

The influence of the addition of high-pressure polyethylene (HDPE) particles on the physical and mechanical characteristics of the composite material obtained based on hydrolyzed pine wood was studied. Pre-treatment of wood chips was carried out by the method of explosive auto-hydrolysis. Samples of the composite material were obtained by hot pressing a mixture of dried hydrolyzed wood particles and HDPE particles without adding other binder components. It was found that the introduction of crushed HDPE in an amount of up to 5 mass parts. per 100 mass parts of hydrolyzed wood into the composition of the press mass leads to an exponential increase in the static bending strength of the composite material up to 15 % compared to the material without HDPE. In addition, the use of even an insignificant amount of HDPE increases the impact toughness of the composite material by at least 30 %. The use of HDPE in amounts exceeding 5 mass parts causes a smooth decrease in the static bending strength described by an inverse exponential law. It has been suggested that the decrease in strength is caused by a change in the nature of the interfacial interaction of the components of the press composition when large amounts of HDPE are used. It was also found that the addition of HDPE particles improves the hydrophobic characteristics of the composite material. Dependences of water absorption and swelling of the material on the amount of HDPE have inverse-exponential character within the most part of the HDPE particles application range. Compared with the control sample, water absorption and swelling in thickness can be reduced by 1.5 times.The use of HDPE in an amount not exceeding 1 mass fraction has no significant effect on the hydrophobic characteristics.

About the Authors

Yu. G. Skurydin
Altai State University
Russian Federation

61, Lenin av., Barnaul, 656049



E. M. Skurydina
Altai State Pedagogical University
Russian Federation

55, Molodezhnaya str., Barnaul, 656031



References

1. Gurunathan T., Mohanty Smita, Nayak Sanjay K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 2015, Vol. 77, pp. 1–25 DOI: http://dx.doi.org/10.1016/j.compositesa.2015.06.007.

2. Malin Brodin, María Vallejos, Mihaela Tanase Opedal, María Cristina Area, Gary Chinga-Carrasco. Lignocellulosics as sustainable resources for production of bioplastics – a review. Journal of Cleaner Production, 2017, Vol. 162, pp. 646–664 DOI: http://dx.doi.org/10.1016/j.jclepro.2017.05.209.

3. Stokke, D.D., Wu, Q., Han, G.: Introduction to wood and natural fiber composites. Wiley, West Sussex 2014, P. 649.

4. Oktay, S., Kızılcan, N., & Bengu, B. Oxidized cornstarch – Urea wood adhesive for interior particleboard production. International Journal of Adhesion and Adhesives, 2021. Vol. 110, p. 102947. DOI: 10.1016/j.ijadhadh.2021.102947.

5. Singh, N., Rana, A., & Badhotiya, G. K. Raw material particle terminologies for development of engineered wood. Materials Today: Proceedings, 2021, Vol. 46(3). DOI: 10.1016/j.matpr.2021.02.616.

6. Uemura Silva, V., Nascimento, M. F., Resende Oliveira, P., Panzera, T. H., Rezende, M. O., Silva, D. A. L., Christoforo, A. L. Circular vs. linear economy of building materials: A case study for particleboards made of recycled wood and biopolymer vs. conventional particleboards. Construction and Building Materials, 2021. vol. 285. p. 122906. DOI: 10.1016/j.conbuildmat.2021.122906.

7. Müller, Uwe; Pretschuh, Claudia; Mitter, Roland; Knappe, Stephan. Dielectric analysis as a cure monitoring system for UF particle boards. International Journal of Adhesion and Adhesives, 2017. Vol. 73, pp. 45–50. DOI:10.1016/j.ijadhadh.2016.07.016.

8. Yanglun Yu, Xianai Huang, WenjiYu A novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Composites Part B: Engineering, 2014. Vol. 56, pp. 48–53 DOI: http://dx.doi.org/10.1016/j.compositesb.2013.08.007.

9. Fu F., Lin L., Xu E. Functional pretreatments of natural raw materials. Advanced High Strength Natural Fibre Composites in Construction 2017, pp. 87–114. DOI: http://dx.doi.org/10.1016/B978-0-08-100411-1.00004-2.

10. Eyitayo Olatunde Olakanmi, Moses J. Strydom, Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Materials Chemistry and Physics, 2016. Vol. 171, pp. 290–302. DOI: http://dx.doi.org/10.1016/j.matchemphys.2016.01.020.

11. Changtong Mei, Xiuxuan Sun, Minli Wan, Qinglin Wu, Sang-Jin Chun & Sunyoung Lee. Coextruded Wood Plastic Composites Containing Recycled Wood Fibers Treated with Micronized Copper- Quat: Mechanical, Moisture Absorption, and Chemical Leaching Performance, Waste and Biomass Valorization, 2018. Vol. 9, pp. 2237–2244. DOI: http://dx.doi.org/10.1007/s12649-017-9992-z.

12. Michael P. Wolcott, Karl Englund, A technology review of wood-plastic composites. 33rd International Particleboard. Composite Materials Symposium, 1999.

13. Yongfeng Li. Wood-Polymer Composites. In book: Advances in Composite Materials – Analysis of Natural and Man-Made Materials, 2011. pp. 229–284. DOI: 10.5772/17579.

14. El-Haggar, Salah M. and Kamel, Mokhtar A. Wood Plastic Composites. In book: Advances in Composite Materials – Analysis of Natural and Man-Made Materials, 2011. pp. 325-344. DOI: 10.5772/18172.

15. Halvarsson Sören; Edlund Håkan; Norgren Magnus. Manufacture of non-resin wheat straw fibreboards. Industrial Crops and Products, 2009. Vol. 29 (2-3). pp. 437–445. DOI: http://dx.doi.org/10.1016/j.indcrop.2008.08.007.

16. German Quintana, Jorge Velasquez, Santiago Betancourt, Piedad Gan. Binderless fiberboard from steam exploded banana bunch Industrial Crops and Products, 2009. Vol. 29(1). pp. 60-66. DOI: http://dx.doi.org/10.1016/j.indcrop.2008.04.007.

17. Angl' esa M.N., Ferrandob F., Farriola X., Salvad J. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pretreatment severity and lignin addition. Biomass and Bioenergy, 2001. Vol. 21. pp. 211–224.

18. Ewanick, S. and Bura, R. Hydrothermal pretreatment of lignocellulosic biomass. Bioalcohol Production. Biochemical Conversion of Lignocellulosic Biomass. A volume in Woodhead Publishing Series in Energy. 2010. pp. 3–23. DOI: http://dx.doi.org/10.1533/9781845699611.1.3.

19. Mason W.H. Low-temperature explosion process of disintegrating wood and the like US Patent 1586159 (USA). 1926.

20. Mason W.H. Process and apparatus for disintegration of wood and the like. US Patent 1578609 (USA). 1926.

21. Startsev O. V., Salin B. N., Skurydin Yu. G. Barothermal hydrolisis of wood in presence of mineral acids // Doklady Akademii nauk. 2000. T. 370. № 5. S. 638–641.

22. Parveen Kumar, Diane M. Barrett, Michael J. Delwiche, and Pieter Stroeve. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial and Engineering Chemistry Research, 2009. Vol. 48 (8). pp. 3713–3729. DOI: http://dx.doi.org/10.1021/ie801542g.

23. Shijie Liu. A synergetic pretreatment technology for woody biomass conversion. Applied Energy, 2015. Vol. 144. pp. 114-128. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.02.021.

24. Muhammad Muzamal, Kerstin Jedvert, Hans Theliander and Anders Rasmuson. Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung, 2015. Vol. 69(1). pp. 61–66. DOI: http://dx.doi.org/10.1515/hf-2013-0234.

25. Tanahashi Mitsuhiko. Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood research: bulletin of the Wood Research Institute Kyoto University, 1990. Vol. 77. pp. 49–117. URL: http://hdl.handle.net/2433/53271.

26. Harifara Rabemanolontsoa and Shiro Saka. Various Pretreatments of Lignocellulosics. Bioresource Technology, 2016. Vol. 199. pp. 83-91. DOI: http://dx.doi.org/10.1016/j.biortech.2015.08.029.

27. Kudakasseril Kurian Jiby, Raveendran Nair Gopu, Hussain Abid, Vijaya Raghavan G. S. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renewable and Sustainable Energy Reviews, Elsevier, 2013. Vol. 25(C), pp. 205–219. DOI: http://dx.doi.org/10.1016/j.rser.2013.04.019.

28. Skurydin Yu. G. Stroenie i svojstva kompozicionnyh materialov, poluchennyh iz othodov drevesiny posle vzryvnogo gidroliza: diss. … kand. tekhn. nauk. Barnaul, 2000. 135 s.

29. GOST 10633-2018 Plity drevesno-struzhechnye i drevesno-voloknistye. Obshchie pravila podgotovki i provedeniya fiziko-mekhanicheskih ispytanij. M.: Standartinform, 2018. 12 s.

30. Skurydin E.M. Razrabotka tekhnologii kompozicionnyh materialov na osnove drevesiny i polimernyh napolnitelej: diss. … kand. tekhn. nauk. Barnaul, 2006. 170 s.

31. Silu Huang, Qiuni Fu, Libo Yan, Bohumil Kasal Characterization of interfacial properties between fibre and polymer matrix in composite materials –A critical review. Journal of Materials Research and Technology, 2021, Vol. 13, pp. 1441–1484 DOI: https://doi.org/10.1016/j.jmrt.2021.05.076.


Review

For citations:


Skurydin Yu.G., Skurydina E.M. Physical and mechanical characteristics of wood-polymer composite material based on hydrolyzed wood. Conifers of the boreal area. 2022;40(4):324-332. (In Russ.)

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)