Preview

Conifers of the boreal area

Advanced search

Species features of changes in the basic density of wood and bark along the stem of a tree

https://doi.org/10.53374/1993-0135-2024-4-11-16

Abstract

In studies of biological productivity and carbon deposition capacity of forests, the qualimetric characteristics of biomass, in particular, moisture and basic density (BD) of wood and bark of stems, are important. BD, as the ratio of the mass of dry matter of stems to their volume in a fresh state, is one of the most important qualimetric characteristics of wood raw materials. It makes a significant contribution to explaining the variability of stem and aboveground biomass. It is known that BD is species-specific, but data on the distribution of BD of wood, and especially of bark, along the stem are quite rare. The purpose of our study was to analyze the specific features of changes in the basic density of wood and bark along the stem of the tree. According to the data of 3849 disks taken from the relative heights of stems for six forest-forming species along the Ural meridian, regression models of a mixed type were calculated, including as independent variables the age of the tree and the diameter of the stem, as well as the position of the  disk along the stem. The species identity of the BD is taken into account by entering dummy variables into the model. It was found that the BF of wood in all species decreases monotonously in the direction from the base of the stem to the top, and the BD of the bark increases monotonously in the same direction. The largest BD of wood is inherent in larch and birch and the smallest one in fir. Siberian cedar has the highest bark density and Scots pine has the smallest one. 

About the Authors

N. I. Plyukha
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

19, Mira str., Yekaterinburg, 620002



V. A. Usoltsev
Ural Federal University named after the first President of Russia B. N. Yeltsin; Botanical Garden, Ural Branch of RAS
Russian Federation

19, Mira str., Yekaterinburg, 620002

202а, 8 Marta Str., Yekaterinburg, 620144



E. M. Anhalt
Orenburg State Agrarian University
Russian Federation

18, Chelyuskintsev str., Orenburg, 460014



References

1. Isayeva L. N. Metod rascheta lokal'noy i sredney plotnosti absolyutno sukhoy drevesiny v stvolakh sosny i listvennitsy // Lesovedeniye. 1978. № 4. S. 90–94.

2. Leont'yev N. L. Tekhnika statisticheskikh vychisleniy. M. : Lesnaya promyshlennost', 1966. 250 s.

3. Melekhov V. I., Babich N. A., Korchagov S. A. Kachestvo drevesiny sosny v kul'turakh. Arkhangel'sk : AGTU, 2003. 110 s.

4. Mel'nik P. G., Tishkov A. S., Aksenov P. A. Produktivnost' i kachestvo drevesiny klimatipov yeli v usloviyakh Podmoskov'ya // Lesnoy vestnik / Forestry Bulletin. 2020. T. 24, № 3. S. 66–73. DOI:10.18698/25421468-2020-3-66-73.

5. Molchanov A. A. Nauchnꞏyye osnovy vedeniya khozyaystva v dubravakh lesostepi. M. : Nauka, 1964. 255 s.

6. Poluboyarinov O. I. Plotnost' drevesiny. M. : Lesnaya promyshlennost', 1976. 160 s

7. Poluboyarinov O. I. Lesokhozyaystvennoye znacheniye plotnosti vyrashchivayemoy drevesiny // Lesnoye khozyaystvo. 1980. № 12. S. 20–22.

8. Usol'tsev V. A. Otsenka formy i polnodrevesnosti stvolov s ispol'zovaniyem mnozhestvennykh svyazey // Vestnik sel'skokhozyaystvennoy nauki Kazakhstana. 1984. № 7. S. 75–79.

9. Usol'tsev V. A., Tsepordey I. S. Geograficheskiye zakonomernosti izmeneniya bazisnoy plotnosti drevesiny i kory lesoobrazuyushchikh porod Yevrazii // Sibirskiy lesnoy zhurnal. 2022. № 3. S. 59–68. DOI: 10.15372/SJFS20220307.

10. Usol'tsev V. A., Tsepordey I. S. Kvalimetriya fitomassy lesnykh derev'yev. Metody nerazrushayushchego kontrolya, baza dannykh i yeye prilozheniya : monografiya. Ural'skiy gosudarstvennyy lesotekhnicheskiy universitet; Botanicheskiy sad Ural'skogo otdeleniya Rossiyskoy akademii nauk. Yekaterinburg : UGLTU, 2023. 182 s. ISBN 978-5-94984-891-3 (https://elar.usfeu.ru/handle/123456789/12715).

11. Chernov V. Yu., Sharapov D., Toropov S. Opredeleniye plotnosti drevesiny metodom izmereniya soprotivleniya sverleniyu. Yoshkar-Ola : Povolzhskiy gosudarstvennyy tekhnologicheskiy universitet, 2019. 200 s.

12. Ashwath M. N., Sathish B. N., Deepthi Dechamma N. L. et al. Geographic and within tree variation for wood properties in Acrocarpus fraxinifolius Wight and Arn. Populations // Journal of Scientific & Industrial Research. 2021. Vol. 80. P. 1049–1055.

13. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2. P. 49–53.

14. Billard A., Bauer R., Mothe F. et al. Improving aboveground biomass estimates by taking into account density variations between tree components // Annals of Forest Science. 2020. Vol. 77. Article 103.

15. Bouslimi B., Koubaa A., Bergeron Y. Regional, site, and tree variations of wood density and growth in Thuja occidentalis L. in the Quebec forest // Forests. 2022. Vol. 13. Article 1984. https://doi.org/10.3390/f13121984.

16. Chave J., Andalo C., Brown S. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests // Oecologia. 2005. Vol. 145. P. 87–99. DOI 10.1007/s00442-005-0100-x.

17. Chowdhury Q., Sarker S. K., Ali B. et al. Accounting intra-tree radial wood density variation provides more accurate above ground mangrove biomass estimation in the Sundarbans // European Journal of Forest Research. 2024. (in press) https://doi.org/10.21203/rs.3.rs-3505676/v1.

18. Dobrowolska E., Wroniszewska P., Jankowska A. Density distribution in wood of European birch (Betula pendula Roth.) // Forests. 2020. Vol. 11. Article 445. http://dx.doi.org/10.3390/f11040445.

19. Fedyukov V. I., Musikhina L. A., Chernova M. S. et al. A non-destructive prediction method for the wood density variations of silver birch trees growing in the Middle Volga region, Russia // South-East European forestry. 2020. Vol. 11, No 1. P. 85–90. DOI: https://doi.org/10.15177/seefor.20-09.

20. Giroud G., Schneider R., Fournier R. A. et al. Modeling black spruce wood fiber attributes with terrestrial laser scanning // Canadian Journal of Forest Research. 2019. Vol. 49, № 6. P. 661–669.

21. Giagli K., Vavrčík H., Fajstavr M. et al. Stand factors affecting the wood density of naturally regenerated young silver birch growing at the lower altitude of the Czech Republic region // Wood Research. 2019. Vol. 64, № 6. P. 1011–1022.

22. King D. A., Davies S. J., Tan S. et al. The role of wood density and stem support costs in the growth and mortality of tropical trees // Journal of Ecology. 2006. Vol. 94 (3). P. 670–680.

23. McLean P. Wood properties and uses of Scots pine in Britain. Forestry Commission Research Report. Forestry Commission, Edinburgh, 2019. 36 p.

24. Njana M. A., Meilby H., Eid T. et al. Importance of tree basic density in biomass estimation and associated uncertainties: a case of three mangrove species in Tanzania // Annals of Forest Science. 2016. Vol. 73. P. 1073–1087. DOI 10.1007/s13595-016-0583-0.

25. Usoltsev V. A. Stem taper, density and dry matter content in biomass of trees growing in Central Eurasia : CD-monograph. Yekaterinburg : Ural State Forest Engineering University, Botanical Garden of Ural Branch of RAS, 2020. Available at: https://elar.usfeu.ru/handle/123456789/9649.

26. Virgulino–Júnior P. C. C., Gardunho D. C. L., Silva D. N. C. et al. Wood density in mangrove forests on the Brazilian Amazon coast // Trees. 2020. Vol. 34. P. 51–60. https://doi.org/10.1007/s00468-019-01896-5.


Review

For citations:


Plyukha N.I., Usoltsev V.A., Anhalt E.M. Species features of changes in the basic density of wood and bark along the stem of a tree. Conifers of the boreal area. 2024;42(4):11-16. (In Russ.) https://doi.org/10.53374/1993-0135-2024-4-11-16

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)