Preview

Conifers of the boreal area

Advanced search

Height of spruce stands (genus Picea) as a characteristic of their productivity: climatic aspects

https://doi.org/10.53374/1993-0135-2023-5-419-424

Abstract

A correct estimation of forest productivity is important for effective management and assessment of the quality of the habitat, and in this regard, many methods have been developed. The productivity of forests is usually determined by the stem volume. However, the latter is influenced by factors such as the initial density and history of forest management, as well as the duration of the logging turnover. The height of the stand was initially used as an indicator of the productivity of the forest sites, based on the hypothesis of its close correlation with the stem volume. This statement is known as the Eichhorn’s rule. Nevertheless, the inclusion of additional variables in the “average height – stem volume” dependence, taking into account the climatic and physical-geographical characteristics of the habitat, as well as soil conditions, significantly improves the predictive ability of the models. Based on the empirical data on the taxation indicators of spruce stands on 630 sample plots, established by different researchers in the territorial gradients of Eurasia, an empirical model of the change in the average height of spruce stands (genus Picea L.) depending on the age and density of the stand, on the one hand, and on the average temperatures of January and average annual precipitation, on the other one, is designed. It is confirmed the effect of the Liebig-Shelford law in the territorial gradients of Eurasia is confirmed. The pattern is consistent with the previously established change in the phytomass of trees and stands in the same gradients. The contributions of taxation indicators and climatic factors to the explanation of the variability of the average height of spruce forests amounted to 88 and 12 %, respectively. 

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

37, Siberian tract, Yekaterinburg, 620100

202a, 8 Marta Str., Yekaterinburg, 620144



I. S. Tsepordey
Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

202a, 8 Marta Str., Yekaterinburg, 620144



V. P. Chasovskikh
Ural State University of Economics
Russian Federation

62, 8 Marta Str., Yekaterinburg, 620144



References

1. Buzykin A. I., Pshenichnikova L. S., Sukhovolsky V. G. Density and productivity of wood cenoses. Novosibirsk : Nauka, 2002. 151 p.

2. Zagreev V. V. Geographical patterns of growth and productivity of stands. M. : Lesnaya Promyshlennost’, 1978. 240 p.

3. Kuzmichev V. V. Patterns of growth of stands. Novosibirsk : Nauka, 1977. 160 p.

4. Kuzmichev V. V. Regularities of the dynamics of stands: principles and models. Novosibirsk : Nauka, 2013. 208 p.

5. Rozenberg G. S., Ryanskiy F. N., Lazareva N. V. et al. General and applied ecology. Samara–Togliatti: Izdatel’stvo Samarskogo gosudarstvennogo ekonomicheskogo universiteta, 2016. 452 р.

6. Svalov N. N. Forecasting the growth of stands. Methods of estimating and forecasting of forest resources. Ser. “Forestry and Forest Management”. Vol. 2. Moscow, VINITI, 1978. 110 р.

7. Tsepordey I. S., Usoltsev V. А. The universal nature of the effect of the Liebig-Shelford law on the biological productivity of forest-forming species along the climatic gradients of Eurasia // Vestnik of Volga State University of Technology. Ser. “Forest, Ecology, Nature Management”. 2022. No. 4 (56). P. 5–18. https://doi.org/10.25686/2306-2827.2022.4.5.

8. Alexander L. V., Zhang X., Peterson T. C. et al. Global observed changes in daily climate extremes of temperature and precipitation // Journal of Geophysical Research. 2006. Vol. 111. Article D05109.

9. Anta M., Diéguez-Aranda U. Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain) // European Journal of Forest Research. 2005. Vol. 124. P. 19–28.

10. Baur F. Ertrags- oder Zuwachstafeln für die Fichte // F. Baur (ed.). Die Fichte in Bezug auf Ertrag, Zuwachs und Form: Unter Zugrundlegung der an der K. Württemb. forstlichen Versuchsanstalt angestellten Untersuchungen. Berlin, Heidelberg: Springer, 1877. P. 1–58.

11. Bravo-Oviedo A., Tomé M., Bravo F. et al. Dominant height growth equations including site attributes in the generalized algebraic difference approach // Canadian Journal of Forest Research. 2008. Vol. 38(9). P. 2348–2358.

12. Burkhart H. E., Tomé M. Modeling forest trees and stands. Springer Dordrecht, Science & Business Media, 2012. 458 p.

13. Carmean W. H., Lenthall D. J. Height-growth and site-index curves for jack pine in north central Ontario // Canadian Journal of Forest Research. 1989. Vol. 19(2). P. 215–224.

14. Chauke M., Mwambi H., Kotze H. Modelling dominant height growth including a rainfall effect using the algebraic difference approach // CERNE. 2022. Vol. 28. Article e-103112. DOI: 10.1590/010477602022280 13112.

15. Clutter J. L., Fortson J. C., Pienaar L. V. et al. Timber management: A quantitative approach. John Wiley & Sons, N.Y., 1983. 334 p.

16. Davis L., Johnson K., Bettinger P. et al. Forest management: to sustain ecological, economic, and social values. Waveland Pr. Inc., 2001. 816 p.

17. Eichhorn F. Beziehungen zwischen Bestandshöhe und Bestandsmasse // Allgemeine Forst- und Jagdzeitung. 1904. Vol. 80. P. 45–49.

18. Goelz J., Burk T. Development of a well-behaved site index equation: jack pine in north central Ontario // Canadian Journal of Forest Research. 1992. Vol. 22(6). P. 776–784.

19. González-García M., Hevia A., Majada J. et al. Dynamic growth and yield model including environmental factors for Eucalyptus nitens (Deane & Maiden) Maiden short rotation woody crops in Northwest Spain // New Forests. 2015. Vol. 46(3). P. 387–407.

20. Hunter I. R., Gibson A. R. Predicting Pinus radiata site index from environmental variables // New Zealand Journal of Forestry Science. 1984. Vol. 14(1). P. 53–64.

21. Mayr H. Waldbau auf naturgesetzlicher Grundlage. Ein Lehr- und Handbuch. Berlin: P. Parey, 1909. 570 p.

22. Picard N., Saint-André L., Henry M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, 2012. 215 p.

23. Sharma M., Subedi N., Ter-Mikaelian M. et al. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees // Forest Science. 2015. Vol. 61(1). P. 25–34.

24. Skovsgaard J. P., Vanclay J. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands // Forestry, 2008. Vol. 81(1). P. 13–31.

25. Snowdon P., Benson M. L., Woollons R. C. Incorporation of climatic indices into models of growth of Pinus radiata in a spacing experiment // New Forests. 1998. Vol. 16(2). P. 101–123.

26. Usoltsev V. A. Forest biomass and primary production database for Eurasia: digital version. The third edition, enlarged. Monograph. Yekaterinburg: Ural State Forest Engineering University, 2020. Available at: https://elar.usfeu.ru/bitstream/123456789/9648/1/Base_v2.xlsx.

27. Wang Y., Lemay V. M., Baker T. G. Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations using a nonlinear mixedeffects model approach // Canadian Journal of Forest Research. 2007. Vol. 37(8). P. 1390–1403.

28. Weiskittel A. R., Hann D. W., Kershaw J. A. jr. et al. Forest growth and yield modeling. John Wiley & Sons, UK, 2011. 432 p.

29. Woollons R. C., Snowdon P., Mitchell N. D. Augmenting empirical stand projection equations with edaphic and climatic variables // Forest Ecology and Management. 1997. Vol. 98(3). P. 267–275.

30. World Weather Maps; 2007. Available at: https://www.mapsofworld.com/referrals/weather.

31. Yılmaz M., Usta A., Öztürk İ. Relationships between site indices and ecological factors for black alder stands in the Turkish eastern Black Sea region // Fresenius Environmental Bulletin. 2015. Vol. 24. P. 1507–1515.


Review

For citations:


Usoltsev V.A., Tsepordey I.S., Chasovskikh V.P. Height of spruce stands (genus Picea) as a characteristic of their productivity: climatic aspects. Conifers of the boreal area. 2023;41(5):419–424. (In Russ.) https://doi.org/10.53374/1993-0135-2023-5-419-424

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)