Preview

Conifers of the boreal area

Advanced search

Prediction of stem radial growth in natural stands and plantations of Pinus sylvestris L. using crown morphometry available for terrestrial lidar scanning and taking into account the multicollinearity of the factors

https://doi.org/10.53374/1993-0135-2025-5-25-35

Abstract

The crown of a tree is important in studying the physiology of the forest canopy and modeling its dynamics, and the dependence of the radial growth of the stem on the morphometry of the crowns has been established. However, the relationship between the structural characteristics of the crown and the growth rings is poorly understood due to the high complexity of analyzing the crown structure using classical approaches. Terrestrial lidar scanning offers anew perspective for quantifying crown structure in 3D format, which can significantly contribute to understanding plant adaptations to the environment and their structural and functional responses. The purpose of this work was to develop predictive models of radial stem growth in relation to crown morphometry available for terrestrial lidar scanning. The research was carried out in the Aman-Karagaj forest in the conditions of the dry steppe of the Turgaj Depression, where 37 sample plots were established in pure Pinus sylvestris L. forests, on which 300 model trees were taken, including 190 in plantations and 110 in natural forests. The optimization of the model structure is performed according to the condition of multicollinearity of independent variables – crown diameter, crown length and crown ratio. It was found that with the same crown morphological structure, the cross-sectional stem area increment in natural stands is 38–46 % lower in relation to plantations, and the radial growth is 17–34 % lower, respectively. The models of stem cross-sectional area increment turned out to be more informative compared to the models of annual radial growth (65–73 % vs. 45–58 %), and the ontogenetic legacy of crown morphological structure is expressed to the greatest extent in increments over 10, but not over 5 years, which is confirmed by comparing the coefficients of determination (0.58–0.73 vs. 0.45–0.65).

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University
Russian Federation

37, Siberian tract, Yekaterinburg, 620100



V. P. Chasovskikh
Ural State University of Economics
Russian Federation

62/45, 8 Marta str./ Narodnaya Volya, Yekaterinburg, 620144



References

1. Druzhinin A. V., Lazareva A. D. Plastiki iz smesi luba i beresty kory berezy bez dobavleniya svyazuyushchikh veshchestv [Wood plastics from a mixture of birch bast and bark without the addition of binders] // Wooden Boards and Wood Plastics. Interuniversity collection of scientific papers. Issue. 2. Sverdlovsk: ULTI, 1975. pp. 141–145.

2. Kazimirov N. I. Metodicheskie polozheniya izucheniya i modelirovaniya lesnykh ekologicheskikh system [Methodological provisions for the study and modeling of forest ecological systems] // Mathematical modeling in biogeocenology. Petrozavodsk: Institute of Biology of the Academy of Sciences of the USSR, 1985. P. 4–7.

3. Liepa I. Ya. Dinamika drevesnykh zapasov: Prognozirovanie i ekologiya [Dynamics of wood stock: Forecast and ecology]. Riga: Zinatne; 1980. 171 p.

4. Nalimov V. V. Teoriya eksperimenta [Theory of experiment]. Moscow: Nauka Publ., 1971. 208 p.

5. Nalimov V. V., Chernova N. A. Statisticheskie metody planirovaniya ekstremal’nykh eksperimentov [Statistical methods of planning extreme experiments]. Moscow: Nauka Publ., 1965. 340 p.

6. Repina E. G., Tsypin A. P., Zaichikova N. A. et al. Ekonometrika v tablichnom redaktore MS Excel (elektronnyj resurs): Praktikum [Econometrics in the MS Excel tabular editor [Electronic resource]: practicum]. Samara: Publishing House of the Samara State Economic University, 2019. ISBN 978-5-94622-970-8. Available at: https://rusneb.ru/catalog/000199_000009_010271621/ (accessed: 15.02.2025).

7. Usoltsev V. A. Fitomassa lesov Severnoj Evrazii: predel’naya produktivnost’ i geografiya [Phytomass of forests of Northern Eurasia: marginal productivity and geography]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2003. 406 p. Available at: http://elar.usfeu.ru/handle/123456789/3303 (accessed: 15.02.2025).

8. Usoltsev V. A. Biologicheskaya produktivnost’ lesov Severnoj Evrazii: metody, baza dannykh i eye prilozheniya [Biological productivity of forests of Northern Eurasia: methods, database and its applications]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. 636 p. Available at: http://elar.usfeu.ru/handle/123456789/3281 (accessed: 15.02.2025).

9. Usoltsev V. A. Zavisimost’ godichnogo priposta stvola ot takcatsionnykh i bioproduktsionnykh pokazatelej dereviev v sosnyakakh Turgajskogo Progiba [The dependence of the annual growth of the trunk on the taxation and production indicators of trees in the pine forests of the Turgaj Depression] // Sibirskij Lesnoj Zhurnal (Siberian Journal of Forest Science). 2024. No. 6. P. 52–58 (in Russian with English abstract).

10. Usoltsev V. A. Godichnoe produtsirovanie kisloroda i deponirovanie ugleroda dereviyami lesoobrazuyushchikh vidov Evrazii: modelirovanie i ranzhirovanie [Annual oxygen production and carbon deposition by trees of forest-forming species of Eurasia: modeling and ranking] // Proceedings of the St. Petersburg Scientific Research Institute of Forestry. 2025. No. 2. Р. 11–32.

11. Usoltsev V. A., Kolchin K. V., Voronov M. P. Fiktivnye peremennye i smeshcheniya vseobshchikh allometricheskikh modelej pri lokal’noj otsenke fitomassy dereviev (na primere Picea L.) [Dummy variables and biases of allometric models when local estimating tree biomass (on an example of Picea L.)] // Eko-Potentsial. 2017. No. 1 (17). P. 22–39. Available at: http://elar.usfeu.ru/bitstream/123456789/6502/1/eko-17-02.pdf (accessed: 15.02.2025).

12. Usoltsev V. A., Terekhov G. G. Allometricheskie modeli biomassy i morfologii dereviev kedra sibirskogo na Urale i problema mul’tikollinearnosti faktorov [Allometric models of biomass and morphology of Siberian cedar trees in the Urals and the problem of multicollinearity of factors] // Conifers of the boreal area. 2025. Vol. 43, No. 2.

13. Ahmed S., Hilmers T., Uhl E. et al. Neighborhood competition modulates the link between crown structure and tree ring variability in monospecific and mixed forest stands // Forest Ecology and Management. 2024. Vol. 560. Article 121839.

14. Ahmed S., Hilmers T., Uhl E. et al. Crown structure indicates tree secondary growth, competition legacy, and growth potential of dominant species in Europe // Ecological Indicators. 2025. Vol. 170. Article 113074.

15. Åkerblom M., Kaitaniemi P. Terrestrial laser scanning: a new standard of forest measuring and modelling? // Annals of Botany. 2021. Vol. 128. P. 653– 661.

16. Barbeito I., Dassot M., Bayer D. et al. Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests // Forest Ecology and Management. 2017. Vol. 405. P. 381– 390.

17. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2 (1). P. 49–53.

18. Bastin J.-F., Finegold Y., Garcia C. et al. The global tree restoration potential // Science. 2019. Vol. 365. P. 76–79.

19. Chatterjee S., Simonoff J. S. Handbook of regression analysis. New York: Wiley, 2013. 252 p.

20. Chatterjee S., Hadi A. S., Price B. Regression analysis by example. New York: John Wiley and Sons, 2000. 359 p.

21. Cole T. G., Ewel J. J. Allometric equations for four valuable tropical tree species // Forest Ecology and Management. 2006. Vol. 229. P. 351−360.

22. De Frenne P., Lenoir J., Luoto M. et al. Forest microclimates and climate change: Importance, drivers and future research agenda // Global Change Biology. 2021. Vol. 27. P. 2279–2297.

23. Esser M. H. Tree trunks and branches as optimum mechanical supports of the crown: I. The trunk // Bulletin of Mathematical Biophysics. 1946. Vol. 8. P. 65–74.

24. Fichtner A., Sturm K., Rickert C. et al. Crown size – growth relationships of European beech (Fagus sylvatica L.) are driven by the interplay of disturbance intensity and inter-specific competition // Forest Ecology and Management. 2013. Vol. 302. P. 178–184.

25. Fischer F. J., Jucker T. No evidence for fractal scaling in canopy surfaces across a diverse range of forest types // Journal of Ecology. 2024. Vol. 112. P. 470–486.

26. Forrester D. I., Ammer C., Annighöfer P. J. et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe // Journal of Ecology. 2018. Vol. 106. P. 746–760.

27. Forrester D. I., Dumbrell I. C., Elms S. R. et al. Can crown variables increase the generality of individual tree biomass equations? // Trees. 2021. Vol. 35. P. 15–26.

28. Graham M. H. Confronting multicollinearity in ecological multiple regression // Ecology. 2003. Vol. 84. P. 2809–2815.

29. Grams T. E. E., Andersen C. P. Competition for resources in trees: physiological versus morphological plasticity // Progress in Botany. 2007. Vol. 68. P. 356–381.

30. Hilmers T., Schmied G., Pretzsch H. Legacy effects of past thinnings modulate drought stress reactions at present // Scandinavian Journal of Forest Research. 2022. Vol. 37. P. 182–199.

31. Jacobs M., Rais A., Pretzsch H. How drought stress becomes visible upon detecting tree shape using terrestrial laser scanning (TLS) // Forest Ecology and Management. 2021. Vol. 489. Article 118975.

32. Jucker T., Bouriaud O., Coomes D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests // Functional Ecology. 2015. Vol. 29. P. 1078–1086.

33. Lin J., Chen D., Yang S. et al. Precise aboveground biomass estimation of plantation forest trees using the novel allometric model and UAV-borne LiDAR // Frontiers in Forests and Global Change. 2023. Vol. 6. Article 1166349.

34. Lines E. R., Fischer F. J., Owen H. J. F. et al. The shape of trees: Reimagining forest ecology in three dimensions with remote sensing // Journal of Ecology. 2022. Vol. 110. P. 1730–1745.

35. Marcoulides K. M., Raykov T. Evaluation of variance inflation factors in regression models using latent variable modeling methods // Educational and Psy-chological Measurement. 2019. Vol. 79(5). P. 874– 882.

36. Millet J., Bouchard A., ´Edelin C. Relationship between architecture and successional status of trees in the temperate deciduous forest // Ecoscience. 1999. Vol. 6(2). P. 187–203.

37. Neter J., Kutner M. H., Nachtsheim C. J. et al. Applied linear statistical models. Chicago, Illinois: Irwin, USA, 1996. 720 p.

38. Petraitis P. S., Dunham A. E., Niewiarowski P. H. Inferring multiple causality: the limitations of path analysis // Functional Ecology. 1996. Vol. 10. P. 421–431.

39. Poorter L., Bongers F., Sterck F. J. et al. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance // Ecology. 2003. Vol. 84. P. 602–608.

40. Pretzsch H. Tree growth as affected by stem and crown structure // Trees. 2021а. Vol. 35. P. 947–960.

41. Pretzsch H. Trees grow modulated by the ecological memory of their past growth: Consequences for monitoring, modelling, and silvicultural treatment // Forest Ecology and Management. 2021b. Vol. 487. Article 118982.

42. Pretzsch H., Ahmed S., Jacobs M. et al. Linking crown structure with tree ring pattern: methodological considerations and proof of concept // Trees. 2022. Vol. 36. P. 1349–1367.

43. Purves D. W., Lichstein J. W., Pacala S. W. Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species // PLoS One. 2007. Vol. 2. Article e870.

44. Sawadogo L., Savadogo P., Tiveau D. et al. Allometric prediction of aboveground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa // Journal of Forestry Research. 2010. Vol. 21. P. 475–481.

45. Schmied G., Hilmers T., Uh, E. et al. The past matters: Previous management strategies modulate current growth and drought responses of Norway spruce (Picea abies H. Karst.) // Forests. 2022. Vol. 13. Article 243.

46. Sharma R. P., Bílek L., Vacek Z. et al. Modelling crown width – diameter relationship for Scots pine in the central Europe // Trees. 2017. Vol. 31. P. 1875–1889.

47. Shinozaki K., Yoda K., Hozumi K. et al. A quantitative analysis of plant form- the pipe model theory: II. Further evidence of the theory and its application in forest ecology // Japanese Journal of Ecology. 1964. Vol. 14. P. 133–139.

48. Sileshi G. A critical review of forest biomass estimation models, common mistakes and correction measures // Forest Ecology and Management. 2014. Vol. 329. P. 237–254.

49. Tian D., He P., Jiang L. et al. Developing crown width model for mixed forests using soil, climate and stand factors // Journal of Ecology. 2024. Vol. 112. P. 427–442.

50. Verbeeck H., Bauters M., Jackson T. et al. Time for a plant structural economics spectrum // Frontiers in Forests and Global Change. 2019. Vol. 2. Article 43.

51. West G. B., Enquist B. J., Brown J. H. A general quantitative theory of forest structure and dynamics // Proceedings of the National Academy of Sciences of the United States of America. 2009. Vol. 106. P. 7040–7045.

52. Wilkes P., Disney M., Vicari M. B. et al. Estimating urban above ground biomass with multi scale LiDAR // Carbon Balance and Management. 2018. Vol. 13. Article 10.

53. Wilkes P., Shenkin A., Disney M. et al. Terrestrial laser scanning to reconstruct branch architecture from harvested branches // Methods in Ecology and Evolution. 2021. Vol. 12(1). P. 1–14.


Review

For citations:


Usoltsev V.A., Chasovskikh V.P. Prediction of stem radial growth in natural stands and plantations of Pinus sylvestris L. using crown morphometry available for terrestrial lidar scanning and taking into account the multicollinearity of the factors. Conifers of the boreal area. 2025;43(5):25-35. (In Russ.) https://doi.org/10.53374/1993-0135-2025-5-25-35

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)