Generic crown length models of two-needled pines
https://doi.org/10.53374/1993-0135-2025-4-13-19
Abstract
The morphology of tree crowns determines the scale and effectiveness of physiological processes, in particular, of photosynthesis, respiration and transpiration, which determine the growth and development of a tree, as well as the quality of wood. Therefore, researchers are focusing on developing models of such morphological characteristics as crown length, relative crown length, and height to crown base. The morphological characteristics of the crown serve as predictive variables in models of crown diameter, vertical profile, tree biomass, and crown fires. The purpose of this study is to build generic models for estimating crown length, relative crown length (crown ratio) and height to crown base based on easily measurable dendrometric characteristics of the tree based on the materials of the author's database for two–needled pines (subgenus Pinus L.) of Eurasia. To achieve this goal, 2,700 model trees with measured taxation indicators were selected from the author's database. Since the study has a continental level, the analysis was performed at the level of a subgenus of two–needled pines as a set of vicarious species, bearing in mind that no species grows throughout Eurasia. As a result, generic multiple models were built to evaluate the morphological parameters of the crown – crown length, crown ratio and height to crown base – by stem diameter at breast height, height and age of the tree, explaining from 52 to 88 % of the variability of a particular morphological index of the crown, and their regression coefficients for independent variables are significant at the probability level p < 0.001 and higher. The proposed multiple models for estimating the morphological parameters of the crown based on the known dendrometric characteristics of the tree can be used in dynamic models of tree and stand growth, in the development of biomass models of trees and stands, as well as in the modeling of crown fires.
About the Author
V. A. UsoltsevRussian Federation
37, Siberian tract, Yekaterinburg, 620100; 62/45, 8 Marta/ Narodnaya Volya str., Yekaterinburg, 620144
References
1. Nalimov V. V. Teoriya eksperimenta. M. : Nauka, 1971. 208 s.
2. Repina E. G., Cypin A. P., Zajchikova N. A. i dr. Ekonometrika v tablichnom redaktore MS Excel [Elektronnyj resurs] : praktikum. Samara: Izd-vo Samar. gos. ekon. un-ta, 2019. ISBN 978-5-94622-970-8. URL: https://rusneb.ru/catalog/000199_000009_010271621/.
3. Usol'cev V. A. Fitomassa model'nyh derev'ev dlya distancionnoj i nazemnoj taksacii lesov Evrazii : monografiya.. Elektronnaya baza dannyh. 3-e izdanie, dopolnennoe. Ekaterinburg: Botanicheskij sad UrO RAN, Ural'skij gosudarstvennyj lesotekhnicheskij universitet, 2023. 1 elektron. opt. disk (CD-ROM). URL: https://elar.usfeu.ru/handle/123456789/12451.
4. Usol'cev V. A., Kolchin K. V., Noricina Yu. V. i dr. Smeshcheniya vseobshchih vidospecifichnyh allometricheskih modelej pri lokal'noj ocenke biomassy derev'ev sosny, kedra i pihty // Eko-potencial. 2017. № 2 (18). S. 47–58.
5. Usol'cev V. A., Terekhov G. G. Allometricheskie modeli biomassy i morfologii derev'ev kedra sibirskogo na Urale i problema mul'tikollinearnosti faktorov // Hvojnye boreal'noj zony. 2025. T. 43. № 2.
6. Baldwin V. C. Jr., Peterson K. D. Predicting the crown shape of loblolly pine trees // Canadian Journal of Forest Research. 1997. Vol. 27. P. 102–107.
7. Beekhuis J. Crown depth of radiata pine in relation to stand density and height // New Zealand Journal of Forestry. 1965. Vol. 10. P. 43–61.
8. Chen Q., Duan G., Liu Q. et al. Estimating crown width in degraded forest: a two-level nonlinear mixedeffects crown width model for Dacrydium pierrei and Podocarpus imbricatus in tropical China // Forest Ecology and Management. 2021. Vol. 497. Article 119486.
9. Clutter J. L., Fortson J. C., Pienaar L. V. et al. Timber management: A quantitative approach. New York: John Wiley and sons, 1983. 333 p.
10. Crecente-Campo F., Alvarez-Gonzalez J. G., Castedo-Dorado F. et al. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain // Forestry. 2013. Vol. 86. P. 481–491.
11. Curtis R. O., Reukema D. L. Crown development and site estimates in a Douglas-fir plantation spacing test // Forest Science. 1970. Vol. 16. P. 287–300.
12. Dutcă I., McRoberts R. E., Naesset E. et al. A practical measure for determining if diameter (D) and height (H) should be combined into D2H in allometric biomass models // Forestry: An International Journal of Forest Research. 2019. Vol. 92 (5). P. 627–634.
13. Fish H., Lieffers V. J., Silins U. et al. Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta // Canadian Journal of Forest Research. 2006. Vol. 36. P. 2104–2111.
14. Fu L., Zhang H., Lu J. et al. Multilevel nonlinear mixed-effect crown ratio models for individual trees of Mongolian oak (Quercus mongolica) in Northeast China // PLoS ONE. 2015. Vol. 10 (8). Article e0133294.
15. Gilmore D. W. Equations to describe crown allometry of Larix require local validation // Forest Ecology and Management. 2001. Vol. 148. P. 109–116.
16. Hasenauer H., Monserud R. A. A crown ratio model for Austrian forests // Forest Ecology and Management. 1996. Vol. 84. P. 49–60.
17. Hynynen J. Predicting tree crown ratio for unthinned and thinned Scots pine stands // Canadian Journal of Forest Research. 1995. Vol. 25. P 57–62.
18. Hytteborn H., Maslov A. A., Nazimova D. I. et al. Boreal forests of Eurasia. In: Ecosystems of the World. Vol. 6. Coniferous Forests. Andersson F. (ed.). Amsterdam, The Netherland: Elsevier, 2005. P. 23–99.
19. Kershaw J. A., Maguire D. A., Hann D. W. Longevity and duration of radial growth in Douglas-fir branches // Canadian Journal of Forest Research. 1990. Vol. 20. P. 1690–1695.
20. Leites L. P., Robinson A. P., Crookston N. L. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the forest vegetation simulator // Canadian Journal of Forest Research. 2009. Vol. 39. P. 655–665.
21. MacFarlane D. W., Green E. J., Burkhart H. E. Population density influences assessment and application of site index // Canadian Journal of Forest Research. 2000. Vol. 30. P. 1472–1475.
22. Maltamo M., Bollandsås O. M., Vauhkonen J. et al. Comparing different methods for prediction of mean crown height in Norway spruce stands using airborne laser scanner data // Forestry. 2010. Vol. 83. P. 257–268.
23. McAlpine R. S., Hobbs M. W. Predicting the height to live crown base in plantations of four boreal forest species // Wildland Fire. 1994. Vol. 4. P. 103–106.
24. Meng S. X., Lieffers V. J., Huang S. M. Modelling crown volume of lodgepole pine based upon the uniform stress theory // Forest Ecology and Management. 2007. Vol. 251. P. 174–181.
25. Moore J. R., Gardiner B. Relative wind firmness of New Zealand-grown Pinus radiata and Douglas-fir: A preliminary investigation // New Zealand Journal of Forestry Science. 2001. Vol. 31(2). P. 208-23.
26. Rijal B., Weiskittel A. R., Kershaw J. A. Development of height to crown base models for thirteen tree species of the North American Acadian Region // The Forestry Chronicle. 2012. Vol. 88. P. 60–73.
27. Ritchie M. W., Hann D. W. Equations for predicting height to crown base for fourteen tree species in southwest Oregon. Oregon State University, Forestry Research Laboratory, Corvallis, OR, 1987. 15 р.
28. Ritson P., Sochacki S. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia // Forest Ecology and Management. 2003. Vol. 175. P. 103– 117.
29. Rouvinen S., Kuuluvainen T. Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scots pine forest // Canadian Journal of Forest Research. 1997. Vol. 27. P. 890–902.
30. Sattler D. F., LeMay V. A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model SORTIE-ND // Canadian Journal of Forest Research. 2011. Vol. 41(8). P. 1567–576.
31. Seidel D., Leuschner C., Muller A. et al. Crown plasticity in mixed forests—quantifying asymmetry as a measure of competition using terrestrial laser scanning // Forest Ecology and Management. 2011. Vol. 261. P. 2123–2132.
32. Sharma R. P., Vacek Z., Vacek S. et al. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) // PLoS ONE. 2017. Vol. 12(10). Article e0186394.
33. Sporek M., Sporek K. Allometric model of crown length for Pinus sylvestris L. stands in South-Western Poland // Forests. 2023. Vol. 14. Article 1779.
34. Sporek M., Sporek K., Kucerka M. Verification of the Scots pine (Pinus sylvestris L.) crown length model // Applied Sciences. 2025. Vol. 15. Article 3124.
35. Sprugel D. G. Correcting for bias in logtransformed allometric equations // Ecology. 1983. Vol. 64. P. 208–210.
36. Temesgen H., LeMay V., Mitchell S. J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia // The Forestry Chronicle. 2005. Vol. 81(1). P. 133–141.
37. Valentine H. T., Mäkelä A., Green E. J. et al. Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce // Trees. 2012. Vol. 26. P. 469–478.
38. Valentine H. T., Ludlow A. R., Furnival G. M. Modeling crown rise in even-aged stands of Sitka spruce or loblolly pine // Forest Ecology and Management. 1994. Vol. 69. P. 189–197.
39. Yan Y., Wang J., Liu S. et al. Modeling the influence of competition, climate, soil, and their interaction on height to crown base for Korean pine plantations in Northeast China // European Journal of Forest Research. 2024. Vol. 143. P. 1627–1640.
40. Zumrawi A. A., Hann D. W. Equations for predicting the height to crown base of six species in the Central Western Willamette Valley of Oregon. Oregon State University, Forest Research Laboratory, Corvallis, OR. Research Paper 52, 1989. 16 p.
41. Zybura H. Lenght of tree crowns in pine stands // Sylwan. 1977. Vol. 1. P. 13–20.
Review
For citations:
Usoltsev V.A. Generic crown length models of two-needled pines. Conifers of the boreal area. 2025;43(4):13-19. (In Russ.) https://doi.org/10.53374/1993-0135-2025-4-13-19











