Interrelationships of morphometric indices of young pine trees on post-agricultural lands
https://doi.org/10.53374/1993-0135-2025-5-7-14
Abstract
The paper considers a number of dependencies between morphometric indices of young pine trees formed on the lands, withdrawn from agricultural use. The work is based on materials of 16 sample areas, laid in accordance with the requirements of OST 56-69-83 ‘Forest inventory sample plots. Methods of laying’.
The aim of the work was to assess the dynamics of the objects on the basis of the method of relative growth, as well as growth as a function of age. Interrelationships between tree diameters and heights, the course of growth of treesby diameter and height, the degree of interdependence of average increments of indicators and their dynamics has been considered.
Literature data on the issue of constancy of ‘relative growth’ were analysed. We analysed allometric relationship between diameters and heights of young pine trees of different age and size. The peculiarities of the growth course of young pine trees formed on the lands withdrawn from agricultural use in terms of height and diameter at the height of 1.3 m and the root neck.
To understand the nature of changes in the degree of intercorrelation between individual characteristics of young pine trees, we calculated the values of average growths by trunk diameters, heights and crown diameters. It turned out that these indices are in a fairly close relationship, as evidenced by the values of paired correlation coefficients. The correlation coefficients between the average growth of trunk diameter and average growth in height, vary from 0.66 to 0.92 and the average is 0.82; the average between average growth of trunk diameter and crown diameter is 0.85 (they vary from 0.64 to 0.95); the average growth of height and crown diameter is 0.68 (they vary from 0.39 to 0.90). The last series of correlation coefficients has the highest variability of 23.0 %.
It turned out that with increasing age the degree of correlation between average growths decreases.
About the Authors
S. K. MamedovaRussian Federation
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037
S. L. Shevelev
Russian Federation
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037
А. А. Vais
Russian Federation
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037
References
1. Pommerening А., Muszta A. Methods of modeling relative growth rates. Forest Ecosystems, 2015, vol. 2, no. 5.
2. Kuz'michev V. V. Zakonomernosti dinamiki drevostoev: principy i modeli : monografija ; SO RAN, In-t lesa im. V. N. Sukacheva. Novosibirsk : Nauka, 2013. 207 s.
3. Hunt R. Basic Growth Analysis: Plant Growth Analysis for Beginners. Unwin Hyman, London, 1990.
4. Taksacija lesa. Hod rosta nasazhdenij: uchebnoe posobie / I. S. Sal'nikova, T. S. Vorob'eva, Z. Ja. Nagimov, S. S. Zubova, O. N. Orehova, A. V. Suslov. Ekaterinburg : Ur. gos. lesotehn. un-t, 2020. 130 s.
5. Semere M., Cherinet A., Gebreyesus M. Climate resilient traditional agroforestry systems in Silite district, Southern Ethiopia. Journal Forest Science, 2022, vol. 68, no. 4, рр. 136–144.
6. Jaroshenko A. Skol'ko lesov v Rossii? // Zemlja kasaetsja kazhdogo. 2023. URL: https://earthtouches.me/articles/2023/11/02/skolko-lesov-v-rossii/.
7. Vserossijskaja sel'skohozjajstvennaja perepis' 2016. T. 3. Jelektronnaja versija http://www.vshp2016.ru.
8. Kudejarov V. N. Sovremennoe sostojanie uglerodnogo balansa i predel'naja sposobnost' pochv k pogloshheniju ugleroda na territorii Rossii // Pochvovedenie. 2015. № 9. S. 1049–1060.
9. Malysh E. V. Renty karbonovyh ferm na zemljah sel'skohozjajstvennogo naznachenija // Regional'nye problemy preobrazovanija jekonomiki. 2021. № 10 (132). S. 58–65.
10. Kurbanov Je. A., Vorob'eva O. N., Gubarev A. V. Ispol'zovanie kosmicheskih snimkov ALOS dlja vyjavlenija ploshhadej byvshih sel'skohozjajstvennyh ugodij, zarastajushhih lesom // Geomatika. 2010. № 4. S. 68–72.
11. Abolina E., Luzadis V. A. Abandoned agricultural land and its potential for short rotation woody crops in Latvia. Land use policy, 2015, vol. 49, рр. 435–445.
12. Bucha T., Papčo J., Sačkov I., Pajtík J., Sedliak M., Barka I., & Feranec J. Woody Above-Ground Biomass Estimation on Abandoned Agriculture Land Using Sentinel-1 and Sentinel-2 Data. Remote Sensing, 2021, vol. 13, no. 13 (2488).
13. Sačkov I., Barka I., Bucha T. Mapping Aboveground Woody Biomass on Abandoned Agricultural Land Based on Airborne Laser Scanning Data. Remote Sensing, 2020, vol. 12, no. 24 (4189).
14. Kolecka N. Height of Successional Vegetation Indicates Moment of Agricultural Land Abandonment. Remote Sensing, 2018, vol. 10, no. 10 (1568).
15. Goga T., Feranec J., Bucha T., Rusnák M., Sačkov I., Barka I., Kopecká M., Papčo J., Oťahe J., Szatmári D., et al. A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote Sensing, 2019, vol. 11, no. 23 (2759).
Review
For citations:
Mamedova S.K., Shevelev S.L., Vais А.А. Interrelationships of morphometric indices of young pine trees on post-agricultural lands. Conifers of the boreal area. 2025;43(5):7-14. (In Russ.) https://doi.org/10.53374/1993-0135-2025-5-7-14










