Age dynamics of biomass of Pinus sibirica Du Tour stands in the Urals
https://doi.org/10.53374/1993-0135-2025-3-28-36
Abstract
The biomass of forest stands plays an important role in the process of atmospheric carbon sequestration, however, the extent of carbon uptake by forests remains controversial, partly due to uncertainties in the assessment of forest biomass and its carbon content. Of the main forest-forming species in Eurasia, the five-needled pines (subgenus Haploxylon Pilg.) account for the smallest volume of empirical values of aboveground biomass in the existing database. These data were obtained on the territory of Siberia and the Far East, but there are no similar materials for the Urals. In the proposed study, based on the materials of 22 sample plots established in plantations and natural stands of Siberian pine (Pinus sibirica Du Tour) aged 17 to 118 years, a recursive system of regression models of aboveground biomass (t per ha) by component composition was developed, describing its dependence on the main taxation indicators of stands with coefficients of determination from 0.94 up to 0.99. Based on them, for the first time, a table of biological productivity by components of aboveground biomass was obtained for Pinus sibirica forests in the Urals. A comparison of the obtained table with previously compiled tables of biological productivity based on yield tables of modal and normal Pinus sibirica forests showed their significant discrepancies. Apparently, when assessing the biomass and carbon deposition capacity of Pinus sibirica forests in the Urals, a preference should be given to the proposed models and the table. Unlike the previously published tables, the suggested models and the table make their possible to combine with different sets of taxation indicators obtained by instrumental taxation, as well as when carrying out state accounting of Pinus sibirica forests.
About the Authors
V. A. UsoltsevRussian Federation
37, Siberian tract, Yekaterinburg, 620100
62/45, 8 Marta str./ Narodnaya Volya, Yekaterinburg, 620144
G. G. Terekhov
Russian Federation
202a, 8 Marta Str., Yekaterinburg, 620144
References
1. Bohanova N. S. Eskiz tablic biologicheskoj produktivnosti pojmennyh dubrav // Voprosy taksacii i lesoustrojstva. M. : CBNTI, 1971. S. 8–10.
2. Gabdelhakov A. K. Fitomassa lipnyakov lesostepi Bashkirskogo Predural'ya : avtoreferat dis. ... kandidata sel'skohozyajstvennyh nauk : Ajdar Kavilovich Gabdelhakov, 06.03.02. Joshkar-Ola, 1997. 24 s.
3. Drejper N., Smit G. Prikladnoj regressionnyj analiz. M. : Statistika, 1973. 392 s.
4. Zamolodchikov D. G., Utkin A. I., Korovin G. N. Opredelenie zapasov ugleroda po zavisimym ot vozrasta nasazhdenij konversionno-ob"emnym koefficientam // Lesovedenie. 1998. № 3. S. 84–93.
5. Vozrastnaya dinamika biomassy drevostoev ol'hi seroj v usloviyah Arhangel'skoj oblasti / A. A. Karaban, V. A. Usol'cev, S. V. Tret'yakov i dr.// Lesa Rossii i hozyajstvo v nih. 2024. № 2. S. 177–178. DOI: 10.51318/ FRET.2024.89.2.019.
6. Kolesnikov B. P., Zubareva R. S., Smolonogov E. P. Lesorastitel'nye usloviya i tipy lesov Sverdlovskoj oblasti. Sverdlovsk : UNC AN SSSR, 1973. 176 s.
7. Krasikov I. I. Dinamika nadzemnoj fitomassy listvennichnyh drevostoev Yuzhnoj Evenkii // Listvennica i ee kompleksnaya pererabotka : mezhvuz. sb. nauchn. trudov. Krasnoyarsk : SibTI, 1987. S. 23–27.
8. Lesotaksacionnyj spravochnik dlya lesov Urala. M. : Goskomles SSSR, 1991. 483 s.
9. Makarenko A. A., Malenko A. A. Struktura fitomassy molodnyakov sosny lentochnyh borov Kazahstana // Vestnik sel'skohozyajstvennoj nauki Kazahstana. 1984. № 6. S. 79–82.
10. Vozrastnaya dinamika biomassy ivnyakov Arhangel'skoj oblasti / A. A. Paramonov, V. A. Usol'cev, S. V. Tret'yakov i dr. // Lesa Rossii i hozyajstvo v nih. 2023. № 1. S. 19–29. DOI 10.51318/FRET.2022.27.41.002.
11. Usol'cev V. A. Formirovanie bankov dannyh o fitomasse lesov. Ekaterinburg : UrO RAN, 1998. 541 s. (http://elar.usfeu.ru/handle/123456789/3224).
12. Usol'cev V. A. Fitomassa lesov Severnoj Evrazii: baza dannyh i geografiya. Ekaterinburg : Izd-vo UrO RAN, 2001. 708 s. (http://elar.usfeu.ru/handle/123456789/3280).
13. Usol'cev V. A. Fitomassa lesov Severnoj Evrazii: normativy i elementy geografii. Ekaterinburg : Izd-vo UrO RAN, 2002. 762 s. (http://elar.usfeu.ru/handle/123456789/3302).
14. Usol'cev V. A. Biologicheskaya produktivnost' lesov Severnoj Evrazii: metody, baza dannyh i ee prilozheniya. Ekaterinburg : UrO RAN, 2007. 636 s. (http://elar.usfeu.ru/handle/123456789/3281).
15. Kolichestvennaya i kvalimetricheskaya sostavlyayushchie biologicheskoj produktivnosti kedrovnikov Urala / V. A. Usol'cev, I. S. Lazarev, V. V. Krudyshev, N. V. Senchilo // Cbornik nauchnyh trudov uchenyh i specialistov fakul'teta ekonomiki i upravleniya UGLTU. Vyp. 3. Ekaterinburg : UGLTU, 2012. S. 261–270.
16. Ispol'zovanie regressionnoj modeli pri analize konversi-onno-ob"emnyh koefficientov fitomassy ol'hi v geograficheskih gradientah Evrazii / V. A. Usol'cev, I. S. Cepordej, A. A. Karaban i dr. // Lesnoj vestnik / Forestry Bulletin, 2024. T. 28. № 2. S. 156–165. DOI: 10.18698/2542-1468-2024-2-156-165.
17. Chetyrkin E. M. Statisticheskie metody prognozirovaniya. M. : Statistika, 1977. 200 s.
18. Tablicy i modeli hoda rosta i produktivnosti nasazhdenij osnovnyh lesoobrazuyushchih porod Severnoj Evrazii (normativno-spravochnye materialy) / A. Z. Shvidenko, D. G. Shchepashchenko, S. Nil'sson i dr. M. : MPR RF, 2006. 803 s.
19. Shchepashchenko D. G., Shvidenko A. Z., Shalaev V. S. Biologicheskaya produktivnost' i byudzhet ugleroda listvennichnyh lesov Severo-Vostoka Rossii. M. : MGUL, 2008. 296 s.
20. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives / M. Balboa-Murias, R. Rodríguez Soalleiro, A. Merino et al. // Forest Ecology and Management. 2006. Vol. 237. P. 29–38.
21. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate / D. I. Forrester, I. H. H. Tachauer, P. Annighoefer et al. // Forest Ecology and Management. 2017. Vol. 396. P. 160–175.
22. Picard N., Saint-André L., Henry M. Manual for building tree volume and biomass allometric equations from field measurement to prediction. FAO, Rome, 2012. 215 r.
23. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela / J. G. Saldarriaga, D. C. West, M. L. Tharp et al. // Journal of Ecology. 1988. Vol. 76. No. 4. P. 938–958.
24. Improved estimates of biomass expansion factors for Russian forests / D. Schepaschenko, E. Moltchanova, A. Shvidenko et al. // Forests. 2018. Vol. 9. Article 312.
25. Sileshi G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures // Forest Ecology and Management. 2014. Vol. 329. P. 237–254.
26. Somogyi Z. Theory of global environmental sustainability. University of Sopron, Forest Research Institute, Hungary, 2024. 52 p. https://scientia.hu/honnantudod/theory-of-global-environmental-sustainability/.
27. Usoltsev V. A. Principles and methods of compiling stand bioproductivity tables // Soviet Forest Sciences. 1988. No. 2. P. 23–32. (http://elar.usfeu.ru/handle/123456789/3302).
28. Usoltsev V. A., Hoffmann C. W. A preliminary crown biomass table for even-aged Picea abies stands in Switzerland // Forestry. 1997. Vol. 70. No. 2. P. 103– 112.
29. Augmentative modeling: A pattern for Populus spp. stand biomass in the Eurasia under the influence of climate change / V. A. Usoltsev, S. O. R. Shobairi, I. S. Tsepordey et al. // Journal of Climatology & Weather Forecasting. 2020a. Vol. 8. No. 3. Article 259. Doi: 10.35248/2332-2594.2020.8.259.
30. Usoltsev V. A., Shobairi O., Chasovskikh V. P. Additive allometric model of Quercus spp. stand biomass for Eurasia // Ecological Questions. 2020b. Vol. 31 (2). P. 39–46. DOI: 10.12775/EQ.2020.012.
31. Usoltsev V. A., Shobairi S. O. R., Tsepordey I. S. et al. Additive model of above-ground biomass of larch single-trees related to age, DBH and height, sensitive to temperature and precipitation in Eurasia // Journal of Applied Sciences & Environmental Management. 2020s. Vol. 24 (10). P. 1759–1766. DOI: https://dx.doi.org/10.4314/jasem.v24i10.8.
32. Usoltsev V. A., Shobairi O., Tsepordey I. S. et al. Are there differences in the response of natural stand and plantation biomass to changes in temperature and precipitation? A case for two-needled pines in Eurasia // Journal of Resources and Ecology. 2020d. Vol. 11, No. 4. P. 331–341. DOI: 10.5814/j.issn.1674-764x.2020. 04.001.
33. Usoltsev V. A., Vanclay J. K. Stand biomass dynamics of pine plantations and natural forests on dry steppe in Kazakhstan // Scandinavian Journal of Forest Research. 1995. Vol. 10. P. 305–312.
34. Zhao J., Kang F., Wang L. et al. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests // PLoS ONE. 2014. Vol. 9 (4). Article e94966.
Review
For citations:
Usoltsev V.A., Terekhov G.G. Age dynamics of biomass of Pinus sibirica Du Tour stands in the Urals. Conifers of the boreal area. 2025;43(3):28–36. (In Russ.) https://doi.org/10.53374/1993-0135-2025-3-28-36
                    
        









