Bacterial microbiome of the phyllosphere of siberian larch (larix sibirica ledeb.) in the zone of influence of industrial emissions from the Norilsk industrial region
https://doi.org/10.53374/1993-0135-2025-2-85-91
Abstract
The bacterial community of the phyllosphere of Siberian larch (Larix sibirica Ledeb.) growing under conditions of severe technogenic pollution in the Norilsk industrial region has been studied. Using metabarcoding methods, the microbial composition of the needles was analyzed, which made it possible to identify the dominant bacterial taxa and assess their role in the adaptation of plants to extreme environmental conditions. The main dominant bacterial phyla in the larch needle samples were Proteobacteria, Actinobacteriota, Firmicutes, and Bacteroidota, which is consistent with their widespread distribution in various ecosystems and their important role in the functioning of microbial communities. Among the identified genera, the most common were Cutibacterium, Staphylococcus, Streptococcus, Corynebacterium, and Klebsiella.
egion has been studied. Using metabarcoding
About the Authors
K. A. MiroshnikovaRussian Federation
50, Akademgorodok St., Krasnoyarsk, 660036
82A, Svobodny Ave., Krasnoyarsk, 660041
Yu. A. Litovka
Russian Federation
50, Akademgorodok St., Krasnoyarsk, 660036
50/28, Akademgorodok, Krasnoyarsk, 660036
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037
I. I. Jalolov
Russian Federation
50/28, Akademgorodok, Krasnoyarsk, 660036
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037
I. N. Pavlov
Russian Federation
50/28, Akademgorodok, Krasnoyarsk, 660036
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037
References
1. Abaimov A. P. i dr. Lesa Krasnoyarskogo Zapolyar’ya. Nauka. Novosibirskoe otdelenie, 1997. С. 208.
2. Ben’kova V. E., Ben’kova A. V. Osobennosti stroeniya drevesiny severnyh populyacij sibirskih vidov listvennicy // Lesovedenie. 2015. № 4. С. 28–36.
3. Litovka Yu. A. i dr. Derevorazrushayushchie svojstva arkticheskih shtammov Porodaedalea niemelaei M. Fischer i Trichoderma atroviride Bissett // Himiya rastitel’nogo syr’ya. 2017. № 1. S. 145–150.
4. Addison S. i dr. What matters most? Assessment of within-canopy factors influencing the needle microbiome of the model conifer, Pinus radiata // Environ Microbiome. 2023. Т. 18. С. 45.
5. Aleynova O. A. i dr. The Biodiversity of Grapevine Bacterial Endophytes of Vitis amurensis Rupr. // Plants. 2022. Т. 11, № 9. С. 1128.
6. Bates S. T. i dr. Examining the global distribution of dominant archaeal populations in soil // ISME J. 2011. Т. 5, № 5. С. 908–917.
7. Bruto M. i dr. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria // Sci Rep. 2014. Т. 4, № 1. С. 6261.
8. Callahan B. J. i dr. DADA2: High-resolution sample inference from Illumina amplicon data // Nat Methods. 2016. Т. 13, № 7. С. 581–583.
9. Carlson R. R., Vidaver A. K. Taxonomy of Corynebacterium Plant Pathogens, Including a New Pathogen of Wheat, Based on Polyacrylamide Gel Electrophoresis of Cellular Proteins† // International Journal of Systematic and Evolutionary Microbiology. 1982. Т. 32, № 3. С. 315–326.
10. Cordovez V. i dr. Ecology and Evolution of Plant Microbiomes // Annu Rev Microbiol. 2019. Т. 73. С. 69–88.
11. De Mandal S., Jeon J. Phyllosphere Microbiome in Plant Health and Disease // Plants. 2023. Т. 12, № 19. С. 3481.
12. Fakhrutdinova V. V., Benkova V. E., Shashkin A. V. Variability of the tree-rings structure of Gmelin’s larch at northern tree line (peninsula of Taymyr) // Siberian Journal of Forest Science. 2017. Т. 4, № 2. С. 62–69.
13. Hartmann F. S. F. и др. The Industrial Organism Corynebacterium glutamicum Requires Mycothiol as Antioxidant to Resist Against Oxidative Stress in Bioreactor Cultivations // Antioxidants (Basel). 2020. Т. 9, № 10. С. 969.
14. Kers J. A. i dr. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species // Molecular Microbiology. 2005. Т. 55, № 4. С. 1025–1033.
15. Li Y. i dr. Virulence mechanisms of plantpathogenic Streptomyces species: an updated review // Microbiology. 2019. Т. 165, № 10. С. 1025–1040.
16. Lindow S. E., Brandl M. T. Microbiology of the Phyllosphere // Appl Environ Microbiol. 2003. Т. 69, № 4. С. 1875–1883.
17. Lyu D. i dr. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success // Microorganisms. 2021. Т. 9, № 4. С. 675.
18. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads // EMBnet. journal. 2011. Т. 17, № 1. С. 10–12.
19. Müller T., Ruppel S. Progress in cultivationindependent phyllosphere microbiology // FEMS Microbiol Ecol. 2014. Т. 87, № 1. С. 2–17.
20. Orellana D. i dr. Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants // Front Microbiol. 2022. Т. 13. С. 1083270.
21. Pavlov I. N. i dr. Phylogenetic Relationships, Pathogenic Traits, and Wood-Destroying Properties of Porodaedalea niemelaei M. Fischer Isolated in the Northern Forest Limit of Larix gmelinii Open Woodlands in the Permafrost Area. 2018.
22. Prithiviraj B. i dr. Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses // The Plant Journal. 2005. Т. 42, № 3. С. 417–432.
23. Quast C. i dr. The SILVA ribosomal RNA gene database project: improved data processing and webbased tools // Nucleic Acids Research. 2013. Т. 41. С. D590–D596.
24. Radouane N. i dr. Potential Plant-To-Plant Transmission: Shared Endophytic Bacterial Community Between Ziziphus lotus and Its Parasite Cuscuta epithymum // Microb Ecol. 2024. Т. 87, № 1. С. 119.
25. Roda-Garcia J. J., Haro-Moreno J. M., LópezPérez M. Evolutionary pathways for deep-sea adaptation in marine planktonic Actinobacteriota // Front. Microbiol. 2023. Т. 14.
26. Ryan R. P. i dr. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions // Nat Rev Microbiol. 2011. Т. 9, № 5. С. 344–355.
27. Sapre S., Gontia-Mishra I., Tiwari S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa) // Microbiological Research. 2018. Т. 206. С. 25–32.
28. Singh R. P., Jha P., Jha P. N. The plant-growthpromoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress // Journal of Plant Physiology. 2015. Т. 184. С. 57–67.
29. Sinha S. i dr. Plant growth–promoting traits of culturable seed microbiome of citrus species from Purvanchal Himalaya // Front. Plant Sci. 2023. Т. 14.
30. Sivakumar N. i dr. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications // Plant Microbiomes for Sustainable Agriculture. 2020. Т. 25. С. 113–172.
31. Timilsina S. i dr. Xanthomonas diversity, virulence and plant – pathogen interactions // Nat Rev Microbiol. 2020. Т. 18, № 8. С. 415–427.
32. Vorholt J. A. Microbial life in the phyllosphere // Nat Rev Microbiol. 2012. Т. 10, № 12. С. 828–840.
33. Xiong C. i dr. Host selection shapes crop microbiome assembly and network complexity // New Phytol. 2021. Т. 229, № 2. С. 1091–1104.
34. Zhang C. i dr. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/ Methylorubrum phyllosphere colonization and plant growth // Nat Commun. 2024. Т. 15, № 1. С. 5969.
Review
For citations:
Miroshnikova K.A., Litovka Yu.A., Jalolov I.I., Pavlov I.N. Bacterial microbiome of the phyllosphere of siberian larch (larix sibirica ledeb.) in the zone of influence of industrial emissions from the Norilsk industrial region. Conifers of the boreal area. 2025;43(2):85-91. (In Russ.) https://doi.org/10.53374/1993-0135-2025-2-85-91










