Preview

Conifers of the boreal area

Advanced search

RESEARCH OF THE INFLUENCE OF STEEL HEAT-CONDUCTING INCLUSIONS ON THERMAL PROPERTIES OF THE FRONTING STRUCTURE FROM WOOD-CEMENT COMPOSITE

Abstract

Improving the energy-saving qualities of housing and communal construction projects is an important task facing the developers of promising construction materials, designers, builders and operators of these facilities. This task is especially relevant for individual low-rise construction using relatively inexpensive building materials from local raw materials. Wood-cement composites make it possible not only to erect enclosing structures with high thermal performance, but also to efficiently dispose of wood waste from sawmilling and woodworking. Accordingly, the problem of environmentally friendly integrated use of wood raw materials is being solved. In the course of the research, the influence of heat-conducting inclusions in the form of steel fasteners on the indicators of the thermal efficiency of enclosing structures made of wood-cement composite (arbolite and sawdust concrete) was determined. The work was based on the use of physical modeling methods (finite element method) implemented in the Elcut software package. The influence of heat-conducting inclusions in the form of metal fasteners on the heat losses of the enclosing structure made of wood-cement composite is very significant and reaches 43...58 % of the value of the heat losses of the structure without heat-conducting inclusions. Metal fasteners, having a temperature below the dew point temperature, are intensively moistened, corroded and contribute to moistening of structural elements in contact with them, which creates the prerequisites for the development of mold and fungi. The results obtained can be used in the design and operation of building structures made of wood-cement composites

About the Authors

S. N. Dolmatov
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



P. G. Kolesnikov
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



References

1. Levin Yu. A. Maloetazhnoye stroitel’stvo: sovremennyye tendentsii rynka i otsenka investitsionnoy privlekatel’nosti // Innovatsii i investitsii. 2017. № 8. S. 137–140.

2. Kuz’menkov A. A., Titova S. A. Tekhniko-ekonomicheskoye sravneniye variantov konstruktsiy sten maloetazhnykh zhilykh zdaniy dlya severnykh usloviya Respubliki Kareliya // Resour. Technol. 2016. № 4. S. 58–70.

3. Inzhutov I. S., Rozhkov A. F., Nikitin V. M. K probleme maloetazhnogo domostroyeniya v Sibiri // Vestnik TGASU. 2007. № 1. S. 75–81

4. Enyushin V. N., Nurmukhametova A. D., Khayeretdinova A. D. Energoeffektivnost’ sovremennykh ograzh-dayushchikh konstruktsiy // Izvestiya KazGASU. 2016. № 4 (38). S. 217–221.

5. Nikolayev S. V. SPKD – sistema stroitel’stva zhil’ya dlya budushchikh pokoleniy // Zhilishchnoye stroi-tel’stvo. 2013. S. 2–4.

6. Architecture 2030 – Pochemu stroitel’nyy sektor? [Elektronnyy resurs]. URL: https://architecture2030.org/why-the-building-sector/ (data obrashcheniya: 01.10.2021).

7. Competition and management of wood-cement compositions among light concretes in the market of construction materials / S. N. Dolmatov, A. V. Nikonchuk and S. V. Gorbunova. IOP Conference Series : Materials Science and Engineering, Volume 822, doi:10.1088/1757-899X/822/1/012001.

8. Dolmatov S. N., Nikonchuk A. V. Issledovaniye pokazateley teploprovodnosti drevesno-tsementnykh kompozitov // Khvoynyye boreal’noy zony. 2019. T. XXXVII, № 5. S. 341–346.

9. Nanazashvili I. Kh., Bun’kin I. F., Nanazashvili V. I. Stroitel’nyye materialy i izdeliya. M. : Adelant, 2005. 443 s.

10. Nanazashvili I. Kh. Stroitel’nyye materialy iz drevesno-tsementnoy kompozitsii. L. : Stroyizdat, 1990. 415 s.

11. Gagarin V. G., Dmitriyev K. A. Uchet teplotekhnicheskikh neodnorodnostey pri otsenke teplozashchity ograzhdayushchikh konstruktsiy v Rossii i evropeyskikh stranakh // Construction materials. 2013. № 6. S. 14–16.

12. ELCUT. Modelirovaniye dvumernykh poley metodom konechnykh elementov. Rukovodstvo pol’zovatelya. SPb. : PK TOR, 2009. 339 s.

13. Zenkevich O. K. Metod konechnykh elementov v tekhnike. M. : MIR, 1975. 542 s.

14. Bendsoe M. P., Sigmund O. Topology optimization: theory, methods and applications. English. Berlin : Springer-Verlag, 2003. 320 r.

15. Issledovaniye teplovoy effektivnosti drevesnotsementnykh kompozitov / S. N. Dolmatov, P. G. Kolesnikov // Khvoynyye boreal’noy zony. 2021. T. 39, № 4. S. 224–231.

16. Dolmatov S. N., Nikonchuk A. V. Issledovaniye pokazateley teploprovodnosti drevesno-tsementnykh kompozitov // Khvoynyye boreal’noy zony. 2019. T. 37, № 5. S. 341–346.

17. Elokhov A. E. Metodiki i primery rascheta teplovykh mostov // Stroitel’stvo i tekhnogennaya bezopasnost’. 2015. № 1 (53). S. 86–93.

18. GOST 30494–2011. Zdaniya zhilyye i obshchestvennyye. Parametry mikroklimata v pomeshcheniyakh. Vved. 01.01.2013. M. : Standartinform, 2013. 12 s.

19. SP 50.13330–2012. Teplovaya zashchita zdaniy. Minregionrazvitiya RF. Vved. 07.01.2013. M., 2012. 97 s.

20. Proyektirovaniye teplovoy zashchity zdaniy. SP 23-101-2004. M., 2004. 196 s.

21. Lomakin A. D. Zashchita fasadnykh poverkhnostey derevyannogo doma // Zhilishchnoye stroitel’stvo. 2013. № 2. S. 51–55.


Review

For citations:


Dolmatov S.N., Kolesnikov P.G. RESEARCH OF THE INFLUENCE OF STEEL HEAT-CONDUCTING INCLUSIONS ON THERMAL PROPERTIES OF THE FRONTING STRUCTURE FROM WOOD-CEMENT COMPOSITE. Conifers of the boreal area. 2022;40(1):76-83. (In Russ.)

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)