Preview

Conifers of the boreal area

Advanced search

ALLOMETRIC MODELS FOR ESTIMATING THE ROOT BIOMASS OF EURASIAN FOREST-FORMING GENERA BY REMOTE SENSING AS RELATED TO GLOBAL WARMING

Abstract

The climate system of the planet is gradually losing its stationarity, as a result of which climatic excesses are becoming more frequent, and climatic scenarios are becoming unpredictable. Predictive scenarios of vegetation change based on process-based models do not provide a clear understanding of whether the biota of the planet is a source or a carbon storage. Empirical modeling of the biomass of trees and stands by regression analysis based on “Big Data” has promising prospects, especially with the use of remote sensing technologies. The contribution of root biomass to the overall biological productivity of forest cover is the least studied. In this paper, statistically significant allometric models of root biomass depending on the tree height and the crown diameter have been developed on the basis of the compiled database on the harvest biomass of the roots of 897 sample trees of six forest-forming genera of Eurasia. The dependence of the root biomass of equal–sized trees on winter temperature, described by a descending curve for larches and firs, and an ascending curve for birches and beeches, has been established. The biomass of roots in pines and oaks is related only to the crown diameter and the tree height, and the change in zonal temperature does not affect this relationship. The contribution of crown diameter, tree height and January temperature to the explanation of root biomass variability is 38, 39 and 23 %, respectively. The proposed allometric models can be used to estimate the biomass of roots of forest-forming genera of Eurasia based on aerial laser sensing

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

37, Siberian tract, Yekaterinburg, 620100

202a, 8 Marta Str., Yekaterinburg, 620144



I. S. Tsepordey
Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

202a, 8 Marta Str., Yekaterinburg, 620144



D. V. Noritsin
Sberbank PJSC, Analytics Competence Center
Russian Federation

44, Gogol Str., Yekaterinburg, 620026



References

1. Standartizaciya v oblasti drevesnogo prirosta. Kaunas : LitSKHA, 1977. 103 s.

2. Vejisov S., Kaplin V. G. K metodike opredeleniya nadzemnoj fitomassy belogo saksaula v Vostochnyh Karakumah // Problemy osvoeniya pustyn’. 1976. № 1. S. 60–64.

3. Gortinskij G. B., Karpov V. G. Osnovnye ponyatiya i principy opredeleniya pervichnoj produkcii //Struktura i produktivnost’ elovyh lesov yuzhnoj tajgi. L. : Nauka, 1973. S. 90–92.

4. Pozdnyakov L. K., Protopopov V. V., Gorbatenko V. M. Biologicheskaya produktivnost’ lesov Srednej Sibiri i Yаkutii. Krasnoyarsk : Kn. izd-vo, 1969. 120 s.

5. Programma-minimum po opredeleniyu pervichnoj biologicheskoj produktivnosti nazemnyh rastitel’nyh soobshchestv (proekt) // Rastitel’nye resursy. 1967. T. 3. Vyp. 4. S. 612–620.

6. Samojlovich G. G. Primenenie aerofotos”emki i aviacii v lesnom hozyajstve. M.-L. : Goslesbumizdat, 1953. 476 s.

7. Usol’cev V. A. O primenenii regressionnogo analiza v lesovodstvennyh zadachah // Lesnaya taksaciya i lesoustrojstvo. 2004. № 1 (33). S. 49–55.

8. Usol’cev V. A., Cepordej I. S. Obnovlennye allometricheskie modeli biomassy 19 drevesnyh vidov i rodov Evrazii dlya bortovogo lazernogo zondirovaniya // Hvojnye boreal’noj zony. 2021a. T. 39. № 6. S. 469–479.

9. Usol’cev V. A., Cepordej I. S. Princip prostranstvenno- vremennógo zameshcheniya v ekologii i prognozirovanie biomassy Picea spp. pri izmenenii klimata // Hvojnye boreal’noj zony. 2021v. T. 39. № 4. S. 269–275.

10. Usol’cev V. A., Cepordej I. S. Prognozirovanie biomassy stvolov sosnovyh derev’ev estestvennyh drevostoev i lesnyh kul’tur v svyazi s izmeneniem klimata // Sibirskij lesnoj zhurnal. 2021b. № 2. S. 72–81. DOI: 10.15372/SJFS20210207.

11. Usol’cev V. A., Cepordej I. S. Klimaticheski obuslovlennye territorial’nye izmeneniya fitomassy derev’ev lesoobrazuyushchih vidov Evrazii i ih prognozirovanie // Sibirskij lesnoj zhurnal. 2021g. № 6. S. 72–90.

12. Usol’cev V. A., Cepordej I. S. Razrabotka modeli biomassy Picea L. i Abies L. v svyazi s raznoobraziem klimaticheskih uslovij v Evrazii // Izv. vuzov. Lesn. zhurn. 2022 (prinyata v pechat’).

13. Usol’cev V. A., Cepordej I. S., Azarenok M. V. Klimaticheski obuslovlennye prostranstvennye i temporal’nye izmeneniya biomassy roda Abies spp. Evrazii v kontekste zakona limitiruyushchego faktora // Hvojnye boreal’noj zony. 2021. T. 39. № 5. S. 392–400.

14. Usol’cev V. A., Cepordej I. S., Kovyazin V. F. Allometricheskie modeli biomassy buka (Fagus L.) i yasenya (Fraxinus L.) dlya lazernogo zondirovaniya v temperaturnom gradiente Evrazii // Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii. 2022. (V pechati).

15. Utkin A. I. Izuchenie lesnyh biogeocenozov // Programma i metodika biogeocenologicheskih issledovanij. M. : Nauka, 1974. S. 281–317.

16. Utkin A. I. Metodika issledovanij pervichnoj biologicheskoj produktivnosti lesov // Biologicheskaya produktivnost’ lesov Povolzh’ya. M. : Nauka, 1982. S. 59–72.

17. Ahmed R., Siqueira P., Hensley S. et al. Uncertainty of forest biomass estimates in north temperate forests due to allometry: implications for remote sensing // Remote Sensing. 2013. Vol. 5. P. 3007–3036.

18. Aijazi A. K., Checchin P., Malaterre L. et al. Automatic detection and parameter estimation of trees for forest inventory applications using 3D terrestrial LiDAR // Remote Sensing. 2017. Vol. 9. Article 946.

19. Aldred A. H., Alemdag I. S. Guidelines for forest biomass inventory. Information Report PI-X-77. Petawawa National Forestry Institute, Canadian Forestry Service, 1988. 133 p.

20. Askari Y., Soltani A., Akhavan R. et al. Assessment of root-shoot ratio biomass and carbon storage of Quercus brantii Lindl. in the central Zagros forests of Iran // Journal of Forest Science. 2017. Vol. 63. P. 282–289.

21. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2 (1). P. 49–53.

22. Blunden J., Arndt D.S., Hartfield G. (Eds.). State of the Climate in 2017 // Bulletin of the American Meteorological Society. 2018. Vol. 99 (8), Si–S332. doi:10.1175/2018BAMSStateoftheClimate.1.

23. Bray J. R. Root production and the estimation of net productivity // Canadian Journal of Botany. 1963. Vol. 41. P. 65–72.

24. Camarretta N., Harrison P. A., Lucieer A. et al. Handheld laser scanning detects spatiotemporal differences in the development of structural traits among species in restoration plantings // Remote Sensing. 2021. Vol. 13. Article1706.

25. Cannell M. G. R. World forest biomass and primary production data. London : Academic Press, 1982. 391 p.

26. Danilin I. M., Medvedev E. M. Forest inventory and biomass assessment by the use of airborne laser scanning method (example from Siberia) // International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2004. Vol. 36 – 8/W2. P. 139–144.

27. Dengler A. Kronengrösse, Nadelmenge und Zuwachsleistung von Altkiefern // Zeitschrift für Forst- und Jagdwesen. 1937. Vol. 69. P. 321–336.

28. Falster D. S., Duursma R. A., Ishihara M. I. et al. BAAD: a Biomass And Allometry Database for woody plants // Ecology. 2015. Vol. 96. P. 1445–1445.

29. Fang O., Wang Y., Shao X. The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years // Trees. 2016. Vol. 30. P. 281–294.

30. Ferraz A., Saatchi S., Mallet C. et al. Lidar detection of individual tree size in tropical forests // Remote Sensing of Environment. 2016. Vol. 183. P. 318–333.

31. Fischlin A., Ayres M., Karnosky D. et al. Future environmental impacts and vulnerabilities // Seppälä R., Buck A, Katila P., (eds). Adaptation of forests and people to climate change: a global assessment report, 2009. P. 53–100 (IUFRO World Series. Vol. 22).

32. Forrester D. I., Tachauer I. H. H., Annighoefer P. et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate // Forest Ecology and Management. 2017. Vol. 396. P. 160–175.

33. Freschet G. T., Pages L., Iversen C. M. et al. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements // New Phytologist. 2021. Vol. 232. P. 973–1122. DOI: 10.1111/nph.175722021.

34. Fu L., Lei X., Hu Z. et al. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China // Annals of Forest Science. 2017. Vol. 74. P. 1–15.

35. Fu W., Wu Y. Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height // Procedia Environmental Sciences. 2011. Vol. 10. P. 2189–2194.

36. Gong P., Sheng Y., Biging G.S. 3D-Model based tree measurement from high-resolution aerial imagery // Photogrammetric Engineering and Remote Sensing. 2002. Vol. 68 (11). P. 1203–1212.

37. Goodman R. C., Phillips O. L., Baker T. R. The importance of crown dimensions to improve tropical tree biomass estimates // Ecological Applications. 2014. Vol. 24 (4). P. 680–698.

38. Grote R., Kiese R., Grünwald T. et al. Modelling forest carbon balances considering tree mortality and removal // Agricultural and Forest Meteorology. 2011. Vol. 151. P. 179–190.

39. Hamraz H., Contreras M. A., Zhang J. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds // Scientific Reports. 2017. Vol. 7 (1). Article 6770.

40. Hartig R. Wachstumsutersuchungen an Fichten // Forstlich-Naturwissenschaftliche Zeitschrift. 1896. Vol. 5 (1, 3). P. 1–15, 33–45.

41. Houghton R. A., Hall F., Goetz S. J. Importance of biomass in the global carbon cycle // Journal of Geophysical Research. 2009. Vol. 114. Article G00E03.

42. Hu H., Li F. L., McCormack M. L. et al. Functionally divergent growth, biomass allocation and root distribution of two xerophytic species in response to varying soil rock fragment content // Plant and Soil. 2021. Vol. 463 (1-2). P. 1–13.

43. Huang C., Liang Y., He H. S. et al. Sensitivity of aboveground biomass and species composition to climate change in boreal forests of Northeastern China // Ecological Modelling. 2021. Vol. 445. Article 109472.

44. Huang J., Tardif J. C., Bergeron Y. et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest // Global Change Biology. 2010. Vol. 16. P. 711–731.

45. Ilvessalo Y. On the correlation between crown diameter and the stem of trees // Communicationes Instituti Forestalis Fenniae. 1950. Vol. 38(2). P. 1–32.

46. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change // Stocker T. F., Qin G.-K., Plattner M. et al. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. 1535 p.

47. Jucker T., Caspersen J., Chave J. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes // Global Change Biology. 2017. Vol. 23. P. 177–190.

48. Kajihara M. Сrown structure of sugi (Cryptomeria japonica) and the relationship between crown dimensions and leaf fresh weight // Bulletin of the Kyoto Prefectural University Forests. 1980. Vol. 24. P. 49–63.

49. Kajihara M. Сrown form, crown structure and the relationship between crown dimensions and leaf fresh weight of hinoki (Chamaecyparis obtusa) // Bulletin of the Kyoto Prefectural University Forests. 1981. Vol. 25. P. 11–28.

50. Ke Y., Quackenbush L. J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing // International Journal of Remote Sensing. 2011. Vol. 32. P. 4725–4747.

51. Kern K. G. Die Beziehungen zwischen einigen Kronenkennwerten und dem Nadeltrockengewicht bei Fichte und Tanne // Allgemeine Forst- und Jagdzeitung. 1962. Vol. 133. P. 13–18.

52. Korpela I. Incorporation of allometry into singletree remote sensing with lidar and multiple aerial images // C. Heipke, K. Jacobsen, M. Gerke (eds.). High resolution earth imaging for geospatial information: ISPRS Hannover Vorkshop, Hannover, Germany May 29 – June 1, 2007. P. 1–6.

53. Lau A., Calders K., Bartholomeus H. et al. Tree biomass equations from terrestrial LiDAR: A case study in Guyana // Forests. 2019. Vol. 10. Article 527.

54. Laybros A., Aubry-Kientz M., Féret J.-B. et al. Quantitative airborne inventories in dense tropical forest using imaging spectroscopy // Remote Sensing. 2020. Vol. 12. Article 1577.

55. Liu R., Yang X., Gao R. et al. Allometry rather than abiotic drivers explains biomass allocation among leaves, stems and roots of Artemisia across a large environmental gradient in China // Journal of Ecology. 2021. Vol. 109(2). P. 1026–1040.

56. Luck L., Hutley L. B., Calders K. et al. Exploring the variability of tropical savanna tree structural allometry with terrestrial laser scanning // Remote Sensing. 2020. Vol. 12. Article 3893.

57. Machimura T., Fujimoto A., Hayashi K. et al. A novel tree biomass estimation model applying the pipe model theory and adaptable to UAV-derived canopy height models // Forests. 2021. Vol. 12 (2). Article 258.

58. Monserud R. A., Huang S., Yang Y. Biomass and biomass change in lodgepole pine stands in Alberta // Tree Physiology. 2006. Vol. 26. P. 819–831.

59. Næsset E., Gobakken T., Holmgren J. et al. Laser scanning of forest resources: the Nordic experience // Scandinavian Journal of Forest Research. 2004. Vol. 19. P. 482–489.

60. Pappas C., Bélanger N., Bergeron Y. et al. Smartforests Canada: A network of monitoring plots for forest management under environmental change // R. Tognetti et al. (eds.). Climate-Smart Forestry in Mountain Regions, Managing Forest Ecosystems. 2022. Vol. 40. P. 521–543.

61. Pollock R. J. The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown model / PhD-thesis in computer science. The University of British Columbia, 1996. 158 p.

62. Poorter H., Jagodzinski A. M., Ruiz-Peinado R. et al. How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents // New Phytologist. 2015. Vol. 208 (3). P. 736–749.

63. Rehling F., Sandner T. M., Matthies D. Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: a study of 43 plant species // Journal of Ecology. 2021. Vol. 109(9). P. 2219–2233.

64. Sato H., Kobayashi H., Delbart N. Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM // Forest Ecology and Management. 2010. Vol. 259. P. 301–311.

65. Satoo T., Madgwick H. A. I. Forest Biomass. Martinus Nijhoff; Dr. W. Junk Publishers, 1982. 152 p. (Forestry Sciences, No. 6).

66. Schaphoff S., Lucht W., Gerten D. et al. Terrestrial biosphere carbon storage under alternative climate projections // Climatic Change. 2006. Vol. 74 (1). P. 97–122

67. Schepaschenko D., Shvidenko A., Usoltsev V. А. et al. A dataset of forest biomass structure for Eurasia // Scientific Data. 2017. Vol. 4. Article No. 170070.

68. Snowdon P., Raison J., Keith H. et al. Protocol for sampling tree and stand biomass. National Carbon Accounting System. Technical report No. 31. Canberra: Australian Greenhouse office, 2002. 66 p.

69. Stegen J. C., Swenson N. G., Enquist B. J. et al. Variation in aboveground forest biomass across broad climatic gradients // Global Ecology and Biogeography. 2011. Vol. 20. P. 744–754.

70. Swatantran A., Tang H., Barrett T. et al. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar // Scientific Reports. 2016. Vol. 6. Article 28277.

71. Tadaki Y., Ogata N., Takagi T. Studies on the production structure of forests. III. Estimation of standing crop and some analyses on productivity of young stands of Castanopsis cuspidata // Journal of the Japanese Forest Society. 1962. Vol. 44. P. 350–359.

72. Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg: Ural State Forest Engineering University; Botanical Garden of Ural Branch of RAS, 2020. DOI: 10.13140/RG.2.2.31984.00001.

73. Usoltsev V. A., Shobairi S. O. R., Tsepordey I. S. et al. On some differences in the response of Picea spp. and Abies spp. single-tree biomass structure to changes in temperatures and precipitation in Eurasia // Environment and Ecology. 2020a. Vol. 38. P. 300–315.

74. Usoltsev V. А., Shobairi S. O. R., Tsepordey I. S. et al. Аdditive model of aboveground biomass of larch single-trees related to age, DBH and height, sensitive to temperature and precipitation in Eurasia // Journal of Applied Sciences & Environmental Management. 2020b. Vol. 24. P. 1759–1766.

75. Usoltsev V. A., Shobairi O., Chasovskikh V. P. Additive allometric model of Quercus spp. stand biomass for Eurasia // Ecological Questions. 2020с. Vol. 31(2). P. 39–46.

76. Usoltsev V., Kоvyazin V., Tsepordey I. et al. Allometric models of Picea spp. biomass for airborne laser sensing as related to climate variables // IOP Conference Series: Earth and Environmental Science. 2021a. Vol. 806, 012033. (II All-Russian scientific-technical conference “Digital Technologies in Forest Sector”, 18–19 March 2021, Saint Petersburg, Russian Federation).

77. Usoltsev V., Zukow W., Tsepordey I. Generic models of the biomass of larches (Larix spp.) and stone pines (Pinus L. subsection Cembrae Loud.) for laser sensing in climatic gradients of Eurasia // Ecological Questions. 2021b. Vol. 32(4), 1–14.

78. Vogt K. A., Persson H. Measuring growth and development of roots // Lassoie J. P., Hinckley T. M. (eds.). Techniques and approaches in forest tree ecophysiology. Boca Raton: CRC Press, FL, 1991. P. 477–501.

79. Wang J. Y., Ju K. J., Fu H. E. et al. Study on biomass of water conservation forest on north slope of Qilian Mountains // Journal of Fujian College of Forestry. 1998. Vol. 18. P. 319–325.

80. Wang L., Gong P., Biging G. S. Individual treecrown delineation and treetop detection in high-spatialresolution imagery // Photogrammetric Engineering and Remote Sensing. 2004. Vol. 70(3). P. 351–358.

81. Whittaker R. H., Marks P. L. Methods of assessing terrestrial productivity // Lieth H., Whittaker R. H. (eds.). Primary productivity of the biosphere. Berlin, Heidelberg, New York: Springer-Verlag, 1975. P. 55–118 (Ecological Studies: Analysis and Synthesis. Vol. 14).

82. World Weather Maps (2007). URL: https://www.mapsofworld.com/referrals/weather/.

83. Xiong F., Nie X., Yang L. et al. Biomass partitioning pattern of Rheum tanguticum on the Qinghai–Tibet Plateau was affected by water-related factors // Plant Ecology. 2021. Vol. 222 (4). P. 1–11.

84. Zanotelli D., Montagnani L., Manca G. et al. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements. Biogeosciences. 2013. Vol. 10. P. 3089– 3108.

85. Zeller L., Liang J., Pretzsch H. Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America // Forest Ecosystems. 2018. Vol. 5 (4). P. 1–17.

86. Zeng W., Duo H., Lei X. et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China // European Journal of Forest Research. 2017. Vol. 136. P. 233–249.

87. Zhen Z., Quackenbush L. J., Zhang L. Trends in automatic individual tree crown detection and delineation– Evolution of LiDAR data // Remote Sensing. 2016. Vol. 8 (4). Article 333


Review

For citations:


Usoltsev V.A., Tsepordey I.S., Noritsin D.V. ALLOMETRIC MODELS FOR ESTIMATING THE ROOT BIOMASS OF EURASIAN FOREST-FORMING GENERA BY REMOTE SENSING AS RELATED TO GLOBAL WARMING. Conifers of the boreal area. 2022;40(1):65-75. (In Russ.)

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)