Preview

Conifers of the boreal area

Advanced search

Ranking of the forest-forming genera of Eurasia by the slenderness (relative height) of the stem

https://doi.org/10.53374/1993-0135-2023-2-175-184

Abstract

The relative height (slenderness) of a tree, as the ratio of its height to diameter at breast height, is one of the most important characteristics of the morphological structure of a tree and a stand. At the beginning of the twentieth century, it was found that it is associated with species, the site quality, age and tree density. Numerous studies have shown that the relative height of a tree increases in direct relation to the degree of its depression in the canopy and is inversely proportional to the relative length of the crown. At the level of a stand, the relative height increases as the density of a stand increases and is described by a convex curve with access to the plateau. In practical application, relative height is used as an indicator of stability under wind and snow loads and as an indicator that affects the mechanical properties of the stem wood, and theoretically plays an important role in the theory of stem shape development. The purpose of our study was to perform a ranking of forest-forming genera (subgenera) of Eurasia by relative height. Based on the materials of 5858 model trees and 5175 stands for 11 tree genera (subgenera) growing on the territory of Eurasia, the influence of taxation indicators on the relative height of trees and stands of forest-forming genera, respectively, was established for the first time and their ranking by relative height was performed with fixed taxation indicators of trees and stands. All regression coefficients of the constructed models are significant at the level of p < 0.001, which ensures reproducibility of the results obtained. It is shown that the sequence of genera in the direction of decreasing the relative height of their trees and stands does not reflect the sequence of decreasing their light-requiring, by Ya. S. Medvedev (1910), in comparison with the available scales of light-requiring of European species.

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

37, Siberian tract, Yekaterinburg, 620100

202a, 8 Marta Str., Yekaterinburg, 620144



I. S. Tsepordey
Botanical Garden of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

202a, 8 Marta Str., Yekaterinburg, 620144

19, Mira str., Yekaterinburg, , 620002



D. V. Noritsin
Sberbank PJSC, Analytics Competence Center
Russian Federation

44, Gogol Str., Yekaterinburg, 620026



References

1. Dreyper N., Smit G. Prikladnoy regressionnyy analiz. M. : Statistika, 1973. 392 s.

2. Kern E. E. Osnovy lesovodstva. M. : Novaya derevnya, 1924. 307 s.

3. Kofman G. B. Rost i forma derev'yev. Novosibirsk : Nauka. Sib. otd., 1986. 211 s.

4. Lyubimenko V. N. O chuvstvitel'nosti khlorofillonosnogo apparata svetolyubivykh i tenevynoslivykh rasteniy. S-Peterburg : tip. SPb. gradonachal'stva, 1905. 27 s.

5. Medvedev YA. S. Opyt issledovaniya gushchiny lesa // Lesnoy zhurnal. 1910. Vyp. 4-5. S. 432–438.

6. Mitropol'skiy A. K. Tekhnika statisticheskikh vychisleniy. M. : Nauka, 1971. 576 s.

7. Nagimov Z. Ya. Zakonomernosti rosta i formirova-niya nadzemnoy fitomassy sosnovykh drevostoyev : аvtoref. dis. … d-ra s.-kh. nauk. 06.03.03. Yekaterinburg : UGLTA, 2000. 40 s.

8. Nesterov N. S. Ocherki po lesovedeniyu. M. : Gossel'khozizdat, 1960. 485 s.

9. Sobachkin D. S., Ben'kova V. Ye., Sobachkin R. S., Buzykin A. I. Vliyaniye gustoty na taksatsionn·yye pokazateli sosnovykh molodnyakov yestestvennogo i iskusstvennogo proiskhozhdeniya // Lesovedeniye. 2000. № 2. S. 3–9.

10. Turskiy M. K. Lesovodstvo. M. : Izd. V. N. Marakuyeva, 1892. 356 c.

11. Usol'tsev V. A. O zakonomernostyakh rosta berezy poroslevogo i semennogo proiskhozhdeniya // Vestnik sel'skokhozyaystvennoy nauki Kazakhstana. 1978. № 6. S. 87–93.

12. Eytingen G. R. Vliyaniye gustoty drevostoya na rost nasazhdeniy // Lesnoy zhurnal. 1918. № 6-8. S. 241–276.

13. Egbäck S., Karlsson B., Högberg K.-A. et al. Effects of phenotypic selection on height-diameter ratio of Norway spruce and Scots pine in Sweden // Silva Fennica. 2018. Vol. 52(2). Article id7738.

14. Erasmus J., Kunneke A., Drew D. M., Wessels C. B. The effect of planting spacing on Pinus patula stem straightness, microfibril angle and wood density // Forestry. 2018. Vol. 91. P. 247–258.

15. Fu L. Y., Zeng W. S., Tang S. Z. et al. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China // Journal of Forest Science. 2012. Vol. 58. N. 3. P. 101–115.

16. Gayer K. Der gemischte Wald, seine Begründung und Pflege, insbesondere durch Horst- und Gruppenwirtschaft. Berlin: Verlag P. Parey, 1886. 168 p.

17. Geyer G. Lehrbuch der forstlichen Bodenkunde und Klimatologie. Erlangen: Verlag von F. Enke, 1856. 569 p.

18. Giagli K., Vavrčík H., Fajstavr M. et al. Stand factors affecting the wood density of naturally regenerated young silver birch growing at the lower altitude of the Czech Republic region // Wood Research. 2019. Vol. 64(6). P. 1011–1022.

19. Gomat H. Y., Deleporte P., Moukini R. et al. What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics? // Annals of Forest Science. 2011. Vol. 68(1). P. 109–120.

20. Gray H. R. The form and taper of forest-tree stems. Oxford Univ., Imp. For. Inst. Paper 32, 1956. 74 p.

21. Jiang L., Brooks J.R. Taper, volume, and weight equations for red pine in West Virginia // Northern Journal of Applied Forestry. 2008. Vol. 25(3). P. 151–153.

22. Kraft G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover: Klindworth’s Verlag, 1884. 147 p.

23. Krajnc L, Farrelly N., Harte A. M. The influence of crown and stem characteristics on timber quality in softwoods // Forest Ecology and Management. 2019. Vol. 435. P. 8–17.

24. Méndez-Dewar G., González-Espinosa M., Equihua M. Spatial heterogeneity of light and tree sapling responses in the understory of disturbed montane forests // iForest. 2014. Vol. 8. P. 448–455.

25. Pang L., Ma Y., Sharma R. P. et al. Developing an improved parameter estimation method for the segmented taper equation through combination of constrained two-dimensional optimum seeking and least square regression // Forests. 2016. Vol. 7. Article 194.

26. Roth B. E., Li X., Huber D. A., Peter G. F. Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the south-eastern USA // Forest Ecology and Management. 2007. Vol. 246. P. 155–162.

27. Sharma R. K. Comparison of development of radiata pine (Pinus radiata D. Don) clones in monoclonal and clonal mixture plots. A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Forestry in the University of Canterbury, 2008. 241 p.

28. Tang Q., Huang Y., Ding Y., Zang R. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests // Biodiversity Science. 2016. Vol. 24(3). P. 262–270.

29. Tumenbayeva A. R., Sarsekova D. N., Małek S. Carbon sequestration of above-ground biomass of Pinus sylvestris L. in the green belt of the city of Astana // Folia Forestalia Polonica, Series A – Forestry. 2018. Vol. 60(3). P. 137–142.

30. Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg: Ural State Forest Engineering University; Botanical Garden of Ural Branch of RAS, 2020a. Available at: https://elar.usfeu.ru/handle/123456789/9647.

31. Usoltsev V. A. Forest biomass and primary production database for Eurasia: digital version. The third edition, enlarged. Monograph. Yekaterinburg: Ural State Forest Engineering University, 2020b. Available at: https://elar.usfeu.ru/bitstream/123456789/9648/1/Base_v2.xlsx.

32. Waghorn M. J., Watt M. S., Mason E. G. Influence of tree morphology, genetics, and initial stand density on outerwood modulus of elasticity on 17-year-old Pinus radiata // Forest Ecology and Management. 2007. Vol. 244. P. 86–92.

33. Watt M. S., Moore J. R., Facon J.-P. et al. Modelling environmental variation in Young’s modulus for Pinus radiata and implications for determination of critical buckling reight // Annals of Botany. 2006. Vol. 98. P. 765–775.

34. Wiesner J. Der Lichtgenuss der Pflanzen: photometrische und physiologische Untersuchungen mit besonderer Rücksichtnahme auf Lebensweise, geographische Verbreitung und Kultur der Pflanzen. Leipzig: Verlag von W. Engelmann, 1907. 322 p.

35. Wilson J. S., Oliver C. D. Stability and density management in Douglas-fir plantations // Canadian Journal of Forest Research. 2011. Vol. 30(6). P. 910–920.


Review

For citations:


Usoltsev V.A., Tsepordey I.S., Noritsin D.V. Ranking of the forest-forming genera of Eurasia by the slenderness (relative height) of the stem. Conifers of the boreal area. 2023;41(2):175-184. (In Russ.) https://doi.org/10.53374/1993-0135-2023-2-175-184

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)