Preview

Conifers of the boreal area

Advanced search

Research of the process of obtaining cellulose acetate from mechanoactivated birch particles

https://doi.org/10.53374/1993-0135-2024-2-73-79

Abstract

In the present article the influence of methods of preliminary mechanoactivation of wood particles on the possibility of obtaining cellulose acetate is evaluated. The results of the study indicate the feasibility of using hydrodynamic mechanical activation of birch sawdust to increase the alpha-cellulose content in holocellulose. This is achieved by increasing the specific surface area of wood fibers through fibrillation and, as a consequence, intensifying the process of nitrate delignification.

Evaluation of the size and distribution of wood particles by sieve method, using an analytical sieving machine, showed that sawdust mechanically activated by hydrodynamic method was more effectively pulverized. During the study of the surface of wood particles by scanning electron microscopy, it was found that the morphological and anatomical structure of sawdust changed markedly during the hydrodynamic treatment process.

During the delignification process of hydrodynamically activated birch sawdust the degree of penetration of the reagent increases, as a result of which, mainly hydrolysis of secondary components occurs: lignin and beta-gammacellulose. As a result, with a yield of holocellulose of 31.4 %, a higher alpha-cellulose content of 82.8 % is observed.

In the case of acetylation by heterogeneous method, cellulose acetate corresponding to cellulose triacetate, well soluble in chloroform, with a bound acetic acid content of 60.3–61.1 % was obtained. In the case of acetylation by homogeneous method, cellulose diacetate was obtained, well soluble in acetone under stirring, with an increased content of bound acetic acid of 54.1–58 %. 

About the Authors

S. N. Kazitsin
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



D. V. Vasilishin
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



A. V. Shishmareva
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



D. D. Dobrynkina
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



V. D. Voronchikhin
Reshetnev Siberian State University of Science and Technology
Russian Federation

31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037



References

1. Ukaz Prezidenta RF ot 7 iyulya 2011 g. № 899 “Ob utverzhdenii prioritetnyh napravlenij razvitiya nauki, tekhnologij i tekhniki v Rossijskoj Federacii i perechnya kriticheskih tekhnologij Rossijskoj Federacii” [Internet resurs] URL: http://www.garant.ru/hotlaw/federal/335057/.

2. Singh, T., Arpanaei, A., Elustondo, D., Wang, Y., Stocchero, A., West, T. A., & Fu, Q. (2022). Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture. Carbon Capture Science & Technology, 4, 100057.

3. Tuntsev, D. V., Prosvirnikov, D. B., & Kozlov, R. R. (2018). Physical and chemical properties of activated lignocellulose and its areas of application. Solid State Phenomena, 284, 779–784.

4. Yang, X., & Berglund, L. A. (2021). Structural and ecofriendly holocellulose materials from wood: microscale fibers and nanoscale fibrils. Advanced Materials, 33(28), 2001118.

5. Fengel D., Vegener G. Drevesina(himiya, ul'trastruktura, reakcii). M., 1988. 512 s.

6. Prokop'ev, A. A. Obzor sovremennyh issledovanij v oblasti acetilirovaniya drevesiny / A. A. Prokop'ev, R. V. Salimgaraeva, R. R. Safin // Derevoobrabatyvayushchaya promyshlennost'. 2022. № 2. S. 106–114.

7. Song, J., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., ... & Hu, L. (2018). Processing bulk natural wood into a high-performance structural material. Nature, 554(7691), 224–228.

8. Yano, H. (2001). Potential strength for resinimpregnated compressed wood. Journal of materials science letters, 20, 1127–1129.

9. Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y., Tu, K., ... & Keplinger, T. (2019). Tunable wood by reversible interlocking and bioinspired mechanical gradients. Advanced science, 6(10), 1802190.

10. Li, Y., Fu, Q., Yu, S., Yan, M., & Berglund, L. (2016). Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules, 17(4), 1358–1364.

11. Keplinger, T., Wang, X., & Burgert, I. (2019). Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. Journal of Materials Chemistry A, 7(7), 2981-2992.

12. Segmehl, J. S., Studer, V., Keplinger, T., & Burgert, I. (2018). Characterization of wood derived hierarchical cellulose scaffolds for multifunctional applications. Materials, 11(4), 517.

13. Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141.

14. Erin'sh, P. P. Stroenie i svojstva drevesiny kak mnogokomponentnoj polimernoj sistemy [Tekst] / P. P. Erin'sh // Himiya drevesiny. 1977. № 1. S. 8–25.

15. Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource technology, 199, 49–58.

16. Pankrushina, N. A. Fizicheskaya aktivaciya processov ekstrakcii i organicheskogo sinteza / N. A. Pankrushina, O. I. Lomovskij, T. P. SHahtshnejder // Himiya v interesah ustojchivogo razvitiya. 2019. T. 27, № 6. S. 704–715. DOI 10.15372/KhUR2019194.

17. Rumpf H. Beanspruchungstheorie der Prallzerkleinerung // Chemie Ingenieur Technik. 1959. Vol. 31, № 5. S. 323–337.

18. Golyazimova, O. V. Uvelichenie effektivnosti izmel'cheniya lignocellyuloznogo rastitel'nogo syr'ya s pomoshch'yu himicheskoj obrabotki / O. V. Golyazimova, A. A. Politov, O. I. Lomovskij // Himiya rastitel'nogo syr'ya. 2009. № 2. S. 53–58.

19. Brandt, K. L., Gao, J., Wang, J., Wooley, R. J., & Wolcott, M. (2018). Techno-economic analysis of forest residue conversion to sugar using three-stage milling as pretreatment. Frontiers in Energy Research, 6, 77.

20. Wang, J., Gao, J., Brandt, K. L., Jiang, J., Liu, Y., & Wolcott, M. P. (2018). Improvement of enzymatic digestibility of wood by a sequence of optimized milling procedures with final vibratory tube mills for the amorphization of cellulose. Holzforschung, 72(6), 435–441.

21. Prosvinikov D. B. i dr. Issledovanie processa delignifikacii drevesiny, predvaritel'no aktivirovannoj parovzryvnoj obrabotkoj // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015. T. 18. № 22. S. 103–106. 22. Prosvirnikov, D. B., Safin, R. G., & Zakirov, S. R. (2018). Microcrystalline cellulose based on cellulose containing raw material modified by steam explosion

22. Akpan, E. I., & Adeosun, S. O. (Eds.). (2019). Sustainable lignin for carbon fibers: principles, techniques, and applications. Springer.

23. Zhuang, X., Yu, Q., Wang, W., Qi, W., Wang, Q., Tan, X., & Yuan, Z. (2012). Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water. Applied biochemistry and biotechnology, 168, 206–218.

24. Borrega, M., & Sixta, H. (2015). Water prehydrolysis of birch wood chips and meal in batch and flow-through systems: a comparative evaluation. Industrial & Engineering Chemistry Research, 54(23), 6075–6084.

25. Kim, H. J., Lee, S., Kim, J., Mitchell, R. J., & Lee, J. H. (2013). Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresource technology, 144, 50–56.

26. Ermolin V. N. i dr. Formirovanie struktury plit maloj plotnosti iz gidrodinamicheski aktivirovannyh myagkih othodov derevoobrabotki // Izvestiya vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2019. № 5 (371). S. 148–157.

27. Kuznecova S. A. i dr. Ekologicheski bezopasnyj process polucheniya cellyulozy iz drevesiny berezy // Zhurnal Sibirskogo federal'nogo universiteta. Himiya. 2008. T. 1, № 1. S. 80–87.

28. Delviawan, A., Kojima, Y., & Kobori, H. (2020). The influence of wet milling time of wood flour on the water resistance of wood plastic composite. Proceedings of ugsas-gu & bwel joint poster session on agricultural and basin water environmental sciences, 9.

29. Antishin D. V., Vasilishin D. V., Krasikova T. V.,

30. Gubin D. D. Vydelenie cellyulozy iz rogoza shirokolistnogo azotnokislym metodom delignifikacii // Chemical Bulletin. 2022. S. 19.

31. Obolenskaya A. V., El'nickaya Z. P., Leonovich A. A. Laboratornye raboty po himii drevesiny i cellyulozy, Ekologiya, Moskva, 1991, 320 s.

32. Bytenskij V. Ya., Kuznecova E. P. Proizvodstvo efirov cellyulozy. L. : Himiya, 1974. 208 s.

33. Himiya drevesiny i sinteticheskih polimerov : lab. praktikum dlya studentov special'nosti 1-48 01 05 “Himicheskaya tekhnologiya pererabotki drevesiny” / sost. A. I. Lamotkin, Zh. V. Bondarenko. Mn. : BGTU, 2005. 82 s.


Review

For citations:


Kazitsin S.N., Vasilishin D.V., Shishmareva A.V., Dobrynkina D.D., Voronchikhin V.D. Research of the process of obtaining cellulose acetate from mechanoactivated birch particles. Conifers of the boreal area. 2024;42(2):73–79. (In Russ.) https://doi.org/10.53374/1993-0135-2024-2-73-79

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)