Preview

Conifers of the boreal area

Advanced search

The change in tree and stand height of some coniferous and deciduous species in the climatic gradients of Eurasia

https://doi.org/10.53374/1993-0135-2024-2-45-52

Abstract

High growth rates in height allow trees to dominate physically other plant forms in appropriate environmental conditions. However, the variation of the vertical components of the forest structure and their causes remain poorly understood. The height of the tree reflects the strategy of obtaining a carbon-depositing effect by trapping light, while the diameter of the stem is closely related to mechanical stability and plumbing ability. The interconnected tree height and stem diameter determine the growth strategy of tree species in accordance with the availability of terrestrial and underground resources for their life support. Usually, aboveground biomass is estimated using empirical equations that include the diameter of the stem at breast height as an independent variable, and in the absence of tree height data, estimates are biased. For such cases, auxiliary allometric models are being developed that describe the dependence of the tree height upon the stem diameter and vary due to the influence of climatic conditions of the area. The purpose of our study is to analyze changes in the height of trees and stands of some coniferous and deciduous species in the climatic gradients of Eurasia. The constructed models are adequate at the level of p < 0.001. Using the example of changes in the heights of trees and stands, the effect of the Liebig-Shelford limiting factor in transcontinental climatic gradients is confirmed. The results can be useful when assessing the biomass of trees and stands using their taxation indicators in relation to climate change.

About the Author

I. S. Tsepordey
Botanical Garden, Ural Branch of RAS; Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

202а, 8 Marta Str., Yekaterinburg, 620144

19, Mira Str., Yekaterinburg, 620002



References

1. Kramer P. D., Kozlovskij T. T. Fiziologiya drevesnyh rastenij. M.: Lesnaya promyshlennost', 1983. 464 s.

2. Rozenberg G. S., Ryanskij F. N., Lazareva N. V. i dr. Obshchaya i prikladnaya ekologiya. Samara-Tol'yatti : Izd-vo Samarskogo gos. ekon. un-ta, 2016. 452 s.

3. Usol'cev V. A. Fitomassa model'nyh derev'ev dlya distancionnoj i nazemnoj taksacii lesov Evrazii. Elektronnaya baza dannyh. 3-e dopolnennoe izdanie. Ekaterinburg: Botanicheskij sad UrO RAN, Ural'skij gosudarstvennyj lesotekhnicheskij universitet, 2023a. 1 elektron. opt. disk (CD-ROM). URL: https://elar.usfeu.ru/handle/123456789/12451.

4. Usol'cev V. A. Biomassa i pervichnaya produkciya lesov Evrazii. Elektronnaya baza dannyh. 4-e dopolnennoe izdanie. Monografiya. Ekaterinburg: Botanicheskij sad UrO RAN, Ural'skij gosudarstvennyj lesotekhnicheskij universitet, 2023b. 1 elektron. opt. disk (CD-ROM). URL: https://elar.usfeu.ru/handle/123456789/12452).

5. Usol'cev V. A., Cepordej I. S. Izmenenie srednej vysoty drevostoev dvuhvojnyh sosen (podrod Pinus L.) v klimaticheskih gradientah Evrazii // Biosfera. 2023a. T. 15, № 2. S. 83-90. DOI: 10.24855/biosfera.v15i1.789.

6. Usol'cev V. A., Cepordej I. S. Izmenenie srednej vysoty osinnikov (rod Populus) v klimaticheskih gradientah Evrazii // Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii. 2023b. Vyp. 245. S. 159–174. DOI: 10.21266/2079-4304.2023.245.159-174.

7. Usol'cev V. A., Cepordej I. S., Chasovskih V. P. Vysota drevostoev eli (rod Picea) kak harakteristika ih produktivnosti: klimaticheskie aspekty // Hvojnye boreal'noj zony. 2023v. T. 41. № 5. S. 419–424. DOI: 10.53374/1993-0135-2023-5-419-424.

8. Cepordej I. S. Biologicheskaya produktivnost' lesoobrazuyushchih vidov v klimaticheskom kontekste Evrazii (pod red. V. A. Usol'ceva). Ekaterinburg: Izd-vo UMC UPI, 2023. 467 s. URL: https://elar.usfeu.ru/handle/123456789/12450.

9. Cepordej I. S., Usol'cev V. A., Noricin D. V. Obosnovanie ispol'zovaniya zimnej temperatury pri prognozirovanii klimaticheski obuslovlennyh izmenenij biomassy lesov Evrazii // Hvojnye boreal'noj zony. 2023. T. 41. № 3. S. 243-247. DOI: 10.53374/1993-0135-20233-243-247.

10. Aranda I., Alıa R., Ortega U. et al. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations // Tree Genetics and Genomes. 2009. Vol. 6. P. 169–178. DOI:10.1007/s11295-009-0238-5.

11. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2. P. 49-53.

12. Bullock J. M., Aronson J., Newton A. C. et al. Restoration of ecosystem services and biodiversity: conflicts and opportunities // Trends in Ecology and Evolution. 2011. Vol. 26. P. 541–549.

13. Bullock S. H. Developmental patterns of tree dimensions in a neotropical deciduous forest // Biotropica. 2000. Vol. 32. P. 42–52.

14. Chambel M. R., Climent J., Alıa R. (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes // Annals of Forest Science. 2007. Vol. 64. P. 87–97. DOI:10.1051/forest.

15. Chave J., Réjou-Méchain M., Búrquez A. et al. Improved allometric models to estimate the aboveground biomass of tropical trees // Global Change Biology. 2014. Vol. 20. P. 3177–3190.

16. de Gouvenain R. C. D., Silander J. A. Do tropical storm regimes influence the structure of tropical lowland rain forests? // Biotropica. 2003. Vol. 35. P. 166–180.

17. Dumroese R. K., Williams M. I., Stanturf J. A. et al. Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering // New Forests. 2015. Vol. 46. P. 947– 964. DOI:10.1007/s11056-015-9504-6.

18. Falster D. S., Duursma R. A., Ishihara M. I. et al. BAAD: a Biomass And Allometry Database for woody plants // Ecology. 2015. Vol. 96 (5). Article 1445. DOI: 10.1890/14-1889.1.

19. FAO. State of the World’s Forests 2006. FAO, Rome, 2006. 168 p.

20. Feldpausch T. R., Banin L., Phillips O. L. et al. 2011. Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106.

21. Feldpausch T. R., Lloyd J., Lewis S. L. et al. Tree height integrated into pantropical forest biomass estimates // Biogeosciences. 2012. Vol. 9. P. 3381–3403.

22. Gibbs H. K., Brown S., Niles J. O. et al. Monitoring and estimating tropical forest carbon stocks: making REDD a reality // Environmental Research Letters. 2007. Vol. 2. Article 045023.

23. Gomez-Aparicio L., Garcıa-Valdes R., RuizBenito P. et al. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change // Global Change Biology. 2011. Vol. 17. P. 2400–2414. DOI:10.1111/j.1365-2486.2011.02421.x.

24. Halle F., Oldeman R. A. A., Tomlinson P. B. Tropical trees and forests: an architectural analysis. Springer, Berlin, 1978. 441 r.

25. Howell S. R., Song G.-Z. M., Chao K.-J. et al. Functional evaluation of height–diameter relationships and tree development in an Australian subtropical rainforest // Australian Journal of Botany. 2022. Vol. 70(2). DOI: 10.1071/BT21049.

26. Hummel S. Height, diameter and crown dimensions of Cordia alliodora associated with tree density // Forest Ecology and Management. 2000. Vol. 127. P. 31–40.

27. IPCC. Climate change 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, 2014. 151 p.

28. Jacobs D. F., Oliet J. A., Aronson J. et al. Restoring forests: What constitutes success in the twentyfirst century? // New Forests. 2015. Vol. 46. P. 601–614. DOI:10.1007/s11056-015-9513-5.

29. Jucker T., Fischer F. J., Chave J. et al. Tallo – a global tree allometry and crown architecture database // Global Change Biology. 2022. Vol. 28. P. 5254–5268. DOI:10.1111/gcb.16302.

30. Kao S.-C., Ganguly A. R. Intensity, duration, and frequency of precipitation extremes under 21stcentury warming scenarios // Journal of Geophysical Research. 2011. Vol. 116. Article D16119. DOI:10.1029/2010JD015529.

31. King D. A. Allometry and life history of tropical trees // Journal of Tropical Ecology. 1996. Vol. 12. P. 25–44.

32. Ledo A., Cornulier T., Illian J. B. et al. Reevaluation of individual diameter : height allometric models to improve biomass estimation of tropical trees // Ecological Applications. 2016. Vol. 26(8). P. 2376–2382.

33. Lines E. R., Zavala M. A., Purves D. W. et al. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition // Global Ecology and Biogeography. 2012. Vol. 21. P. 1017–1028. DOI:10.1111/j.1466-8238.2011.00746.x.

34. Lopez-Serrano F., Garcıa-Morote A., AndresAbellan M. et al Site and weather effects in allometries: a simple approach to climate change effect on pines // Forest Ecology and Management. 2005. Vol. 215. P. 251–270. DOI:10.1016/j.foreco.2005.05.014.

35. Malhi Y., Wood D., Baker T. R. et al. The regional variation of aboveground live biomass in oldgrowth Amazonian forests // Global Change Biology. 2006. Vol. 12. P. 1107–1138.

36. Moles A. T., Warton D. I., Warman L. et al. Global patterns in plant height // Journal of Ecology. 2009. Vol. 97. P. 923–932.

37. Molto Q., Hérault B., Boreux J. J. et al. Predicting tree heights for biomass estimates in tropical forests – a test from French Guiana // Biogeosciences. 2014. Vol. 11. P. 3121–3130.

38. Newton A. C., Cantarello E. Restoration of forest resilience: An achievable goal? // New Forests. 2015. Vol. 46. P. 645–668. DOI:10.1007/s11056-015-9489-1.

39. Nogueira E. M., Nelson B. W., Fearnside P. M. et al. Tree height in Brazil’s “arc of deforestation”: shorter trees in South and Southwest Amazonia imply lower biomass // Forest Ecology and Management. 2008. Vol. 255. P. 2963–2972.

40. Packard G. C. Multiplicative by nature: logari- thmic transformation in allometry // Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2014. Vol. 322(4). P. 202–207. DOI: 10.1002/jez.b.22570.

41. Paoli, G., Curran, L., Slik, J.: Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in Southwestern Borneo // Oecologia. 2014. Vol. 155. P. 287–299. DOI:10.1007/s00442-007-0906-9, 2008.

42. Ruiz-Benito P., Lines E. R., Gomez-Aparicio L. et al. Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition // PLoS ONE. 2013. Vol. 8. Article e56843. DOI: 10.1371/journal.pone.0056843.

43. Ryan M. G., Phillips N., Bond B. J. The hydraulic limitation hypothesis revisited // Plant, Cell and Environment. 2006. Vol. 29. P. 267–281.

44. Santos-del-Blanco L., Zas R., Notivol E. et al. Variation of early reproductive allocation in multi-site genetic trials of Maritime pine and Aleppo pine // Forest Systems. 2010. Vol. 19. P. 381–392. DOI: 10.5424/fs/2010193-9109.

45. Vizcaıno-Palomar N., Ibanez I., Benito-Garzon M. et al. Climate and population origin shape pine tree height-diameter allometry // New Forests. 2017. Vol. 48. P. 363–379. DOI: 10.1007/s11056-016-9562-4.

46. World Weather Maps, 2007. Available at: https://www.mapsofworld.com/referrals/weather.


Review

For citations:


Tsepordey I.S. The change in tree and stand height of some coniferous and deciduous species in the climatic gradients of Eurasia. Conifers of the boreal area. 2024;42(2):45–52. (In Russ.) https://doi.org/10.53374/1993-0135-2024-2-45-52

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)