Digitalisation of the management system of maintenance and repair of forestry machines
https://doi.org/10.53374/1993-0135-2024-1-64-71
Abstract
The problem of increasing the efficiency of forestry machinery by monitoring its technical condition and timely performance of necessary maintenance and repair is relevant, since maintaining the working condition of machines requires large time, material and financial expenses, with sudden machine failure leading to downtime and losses of the enterprise. This is particularly important for forestry machines that are located at the harvesting area, far away from the company's service base. In this case, it is important to constantly monitor the condition of the machines and control all activities related to quality and timely maintenance and repair, which can be carried out by the machine operator himself, by a visiting company team, a field service of a universal or dealership. The use of electronic systems that facilitate the operation of modern machines, as well as self-diagnostic systems, creates the prerequisites for the introduction of technology for the remote monitoring of their technical condition. At the same time, in order to effectively solve the problem of maintaining machine operability it is necessary to take into account a large number of various factors related both to operating conditions of the machine and its real technical condition, and availability of spare repair capacities, qualified repair personnel, spare parts and materials, capabilities of third-party service organizations. A successful solution to the problem of improving the efficiency of the maintenance and repair system is possible through the introduction of digital technologies for both monitoring the technical condition of machines, and for planning work and the purchase of necessary spare parts and materials, management of all production processes on the basis of a unified management information system of ERP class. The selection of a specific maintenance and repair management software should be based on an analysis of the capabilities of the specific software product, the needs of the company, and the possibility of integrating the purchased software into a unified management information system.
About the Author
V. V. SivakovRussian Federation
3, Stanke Dimitrova str., Bryansk, 241037
References
1. Fanta E. A. Klyuchevye pokazateli effektivnosti v ispol'zovanii zapasnyh chastej kak tochki kontrolya v sisteme upravleniya proizvodstvennym predpriyatiem // Voprosy innovacionnoj ekonomiki 2019. Vol. 9. № 1. Pp. 267–274. DOI: 10.18334/vinec.9.1.39935.
2. Iovlev G. A. Mirovaya praktika organizacii tekhnicheskogo servisa // Agroprodo-vol'stvennaya politika Rossii. 2018. № 4(76). Pp. 49–53.
3. Gurskij A. S., Ivashko V. S. Ispol'zovanie transportnoj telematiki i distancionnoj diagnostiki dlya sovershenstvovaniya tekhnicheskogo obsluzhivaniya i remonta transportnyh sredstv // Izvestiya Nacional'noj akademii nauk Belarusi. Seriya fiziko-tekhnicheskih nauk. 2020. Vol. 65, № 3. Pp. 375–383. DOI: 10.29235/1561-8358-2020-65-3-375-383.
4. Bauer H., Patel M., Veira J. (2016) The Internet of Things: sizing up the opportunity. New York (NY): McKinsey & Company. URL: http://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-thingssizing-up-the-opportunity/.
5. Parshina I. S., Frolov E. B. Development of a digital twin of the production system on the basis of modern digital technologies // Ekonomika v promyshlennosti = Russian Journal of Industrial Economics, 2020. Vol. 13. No. 1. Pp. 29–34. DOI: 10.17073/2072-1633-2020-1-29-34.
6. Tugengol'd A. K., Voloshin R. N., Yusupov A. R., Kruglova T. N. Tekhnicheskoe obsluzhivanie tekhnologicheskih mashin na baze cifrovizacii // Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 19, № 1. Pp. 74–80. DOI 10.23947/1992-5980-2019-19-1-74-80.
7. Zav'yalov A. P. Diagnosticheskoe obsluzhivanie oborudovaniya i truboprovodov neftegazovyh proizvodstv pri risk-orientirovannom podhode k ekspluatacii // Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. 2020. № 3(117). Pp.79–81. DOI 10.33285/1999-6934-2020-3(117)-79-81.
8. Bezuglov A.E., Kislicyna O.A. Klyuchevye pokazateli effektivnosti pri provedenii tekhnicheskogo obsluzhivaniya i remonta oborudovaniya // Voprosy innovacionnoj ekonomiki. 2019. Vol 9. № 4. Pp. 1501– 1514. DOI: 10.18334/vinec.9.4.41208.
9. Goncharov A. B., Tulinov A. B., Perepechaj B. A., Goncharov A. A. Metody organizacii sis-temy tekhnicheskogo obsluzhivaniya i remonta oborudovaniya s cel'yu obespecheniya ego bezotkaznoj raboty // Remont. Vosstanovlenie. Modernizaciya. 2017. № 2. Pp. 35–40.
10. Merdanov Sh. M., Konev V. V. Sovershenstvovanie organizacii tekhnicheskogo obsluzhivaniya i remonta stroitel'no-dorozhnyh mashin // Transport i mashinostroenie Zapadnoj Sibiri. 2020. № 2. Pp. 15–21.
11. Semykina A. S., Zagorodnij N. A. Sovershenstvovanie sistemy tekhnicheskogo obsluzhivaniya i remonta kar'ernogo avtomobil'nogo transporta // Mir transporta i tekh-nologicheskih mashin. 2022. № 3-4(78). Pp. 35–41. DOI 10.33979/2073-7432-2022-4(78)-3-35-41.
12. Tesovskij A. Yu. Puti povysheniya kachestva tekhnicheskogo obsluzhivaniya i remonta oborudovaniya i mashin lesozagotovok i lesnogo hozyajstva na mestah ekspluatacii // Stroitel'nye i dorozhnye mashiny. 2017. № 5. Pp. 40–41.
13. Zaprudnov V. I., Karpachev S. P., Bykovskij M. A. Potrebnost' parka lesosechnyh mashin v tekhnicheskom obsluzhivanii // Lesnoj vestnik. Forestry Bulletin. 2017. Vol. 21. № 2. Pp. 76–79. DOI: 10.18698/2542-1468-2017-2-76-79.
14. Zaikin A. N., Sivakov V. V., Zelikov V. A., Stasyuk V. V., Chuikov A. S., Zelikova N. V. (2022) Software for management of forestry and logging processes: assessment of applicability. Lesotekhnicheskii zhurnal [Forest Engineering journal], Vol. 12, No. 1 (45), pp. 96–109 (in Russian). DOI: https://doi.org/10.34220/issn.2222-7962/2022.1/8.
15. Multifleet by ponsse. URL: https://www.ponsse.com/en/service/multifleet#/ (data obrashcheniya: 10.05.2023).
16. Komatsu. MaxiFleet. URL: https://www.komatsuforest.ru/сервис/maxifleet (data obrashcheniya: 10.05.2023).
17. Sistema udalennogo monitoringa tekhniki JDLink. URL: https://tmbk.ru/media/k2/attachments/Буклет%20Система%20удаленного%20мониторинга%20техники%20JDLink.pdf (data obrashcheniya: 10.05.2023).
18. Gölzer P., Fritzsche A. (2017) Data-driven operations management: organisational implications of the digital transformation in industrial practice. Production Planning and Control 28(16): 1332–1343 DOI: 10.1080/09537287.2017.1375148.
19. Tolstykh T. O., Afonin S. E. Strategic development of scientific and technical potential of industry during the digital transformation of economy. Russian Journal of Industrial Economics. 2021; 14(4): 410–417. (In Russ.) https://doi.org/10.17073/2072-1633-2021-4-410-417.
20. Meissner H., Ilsena R., Auricha J. C. (2017). Analysis of Control Architectures in the Context of Industry 4.0 // Procedia CIRP. Vol. 62. P. 165–169.
21. Kolberg D., Zühlke D. (2015). Lean Automation enabled by Industry 4.0 Technologies. December 2015 IFAC-Papers On Line 48(3):1870–1875. DOI: 10.1016/j.ifacol.2015.06.359.
22. Erboz G. (2020). A qualitative study on industry 4.0 competitiveness in Turkey using Porter diamond model. Journal of Industrial Engineering and Management 13(2): 266. DOI: 10.3926/jiem.2915.
23. Drygin M. Yu. Razrabotka sistemy kontrolya i ucheta raboty dlya kar'ernyh ekskavatorov tipov draglajn i mekhlopata // Vestnik KuzGTU. 2020. № 1 (137). Pp. 29–39. DOI: 10.26730/1999-4125-2020-1-29-39.
24. Vin Zo Htej, Pevzner L. D., Temkin I. O. Algoritmicheskoe i apparatnoe obespechenie bortovoj informacionnoj sistemy shagayushchego draglajna // GIAB. 2019. № 2. Pp. 190–196. DOI: 10.25018/0236-1493-2019-02-0-190-196.
25. Abros'kin A.S.Monitoring raboty kar'ernyh avtosamosvalov na sovremennom etape // Vestnik IrGTU. 2015. № 3 (98). URL: https://cyberleninka.ru/article/n/monitoring-raboty-kariernyh-avtosamosvalov-nasovremennom-etape (data obrashcheniya: 07.02.2023).
26. Semenov M. A., Bol'shunova O. M. Kontrol' zagruzki kar'ernyh avtosamosvalov // Zapiski Gornogo instituta. 2008. Vol. 178. Pp. 143–145. URL: https://cyberleninka.ru/article/n/kontrol-zagruzkikariernyh-avtosamosvalov (data obrashcheniya: 07.02.2023).
27. Gupta, Dr & Bansal, Dr & Singh, Sandeep. (2020). Application of Failure Mode Effect Analysis for Improved Scheduling in Maintenance of Machines. International Journal of Innovative Technology and Exploring Engineering. 9. 895–899. 10.35940/ijitee.E3025.049620.
28. Kurniawan, Rizki & Kholik, Heri. (2017). Usulan Perawatan Mesin Stitching Dengan Metode Reliability Centered Maintenance. Jurnal Teknik Industri. 16. 83. Vol. 16. Nо. 2. Pp. 83–91. 10.22219/JTIUMM.
29. Sravnenie sistemy upravleniya tekhnicheskim obsluzhivaniem i remontom (SU TO i R). URL: https://soware.ru/categories/maintenance-managementsystems (data obrashcheniya: 05.05.2023).
30. Drakunov I. I., Sivakov V. V., Derevyagin R. Yu. Sovremennoe programmnoe obespechenie dlya upravleniya sistemoj tekhnicheskogo obsluzhivaniya i remonta avtomobilej // Modernizaciya i nauchnye issledovaniya v transportnom komplekse. 2022. Vol. 1. Pp. 30–33. EDN SHTJGY.
31. Drakunov I. I., Sivakov V. V., Zaikin A. N. Analiz programmnogo obespecheniya dlya upravleniya sistemoj tekhnicheskogo obsluzhivaniya i remonta avtomobilej // Aktual'nye voprosy tekhnicheskoj ekspluatacii i avtoservisa podvizhnogo sostava avtomobil'nogo transporta: Sbornik nauchnyh trudov po materialam 81-oj nauchno-metodicheskoj i nauchno-issledovatel'skoj konferencii MADI, Moskva, 31 yanvarya – 02 2023 goda. Moskva : Moskovskij avtomobil'no-dorozhnyj gosudarst vennyj tekhnicheskij universitet (MADI), 2023. Pp. 91–99. EDN IUUCTA.
Review
For citations:
Sivakov V.V. Digitalisation of the management system of maintenance and repair of forestry machines. Conifers of the boreal area. 2024;42(1):64-71. (In Russ.) https://doi.org/10.53374/1993-0135-2024-1-64-71