The ratio of crown diameter to stem diameter: generic models of forest-forming species of Eurasia
https://doi.org/10.53374/1993-0135-2024-1-36-42
Abstract
The crowns of trees were subjected to much less quantitative study than their stems, primarily because of their lower use value. However, the size of the crown, closely related to the photosynthetic ability of the tree, is an important parameter in the study of tree growth. In closed and thickened stands, measuring the diameter of the crown is less accurate and much more labor-consuming compared to other indicators. Therefore, the availability of allometric models for estimating the diameter of crowns reduces costs when obtaining new initial data. In literature, the ratio of crown diameter to stem diameter at breast height (relative crown diameter) was used to predict the size of the tree growth area and to develop thinning regimes, to predict the stand density at a given average stem diameter and to estimate the stem diameter by crown diameter measured using remote sensing methods. The purpose of our study is to calculate the generic allometric dependences of the relative diameter of the crown on the diameter of the tree stem for the main forest-forming species and genera of Eurasia. According to the actual measurement data of 5,497 model trees of 23 forest-forming species and genera (subgenera) of Eurasia, allometric models of the relationship between the relative diameter of the crown and the stem diameter at breast height were compiled for the first time. According to the ranking performed, species and genera are distributed according to the relative diameter of the crown in the following descending order: Juglans, Phellodendron, Maackia, Acer, Ulmus, Chosenia, Salix, Quercus, Carpinus, Tilia, Fraxinus, Robinia, Populus, Larix, Fagus, Betula, Haploxylon, Chamaecyparis, Abies, Picea, Alnus, Pinus, Cryptomeria. Models at the level of genera can be applied to those species for which data are not yet available within the genus.
About the Authors
V. A. UsoltsevRussian Federation
37, Sibirskiy Trakt, Yekaterinburg, 620100
202а, 8 Marta Str., Yekaterinburg, 620144
N. I. Plyukha
Russian Federation
37, Sibirskiy Trakt, Yekaterinburg, 620100
I. S. Tsepordey
Russian Federation
202а, 8 Marta Str., Yekaterinburg, 620144
References
1. Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The third edition, enlarged. Yekaterinburg: Botanical Garden of Ural Branch of RAS, 2023. URL: https://elar.usfeu.ru/handle/123456789/12451.
2. Usoltsev V. A., Tsepordey I. S. Crown morphology of forest-forming genera of Eurasia: allometry and ranking // Conifers of the Boreal Area. 2023. Vol. XLI. No. 6. P. 504–514. DOI: 10.53374/1993-0135-2023-6-504-514.
3. Usoltsev V. A., Tsepordey I. S., Chasovskikh V. P. Models for estimating biomass of forest-forming species by crown diameter as related to drone involving // Conifers of the Boreal Area. 2023. Vol. 41(4). P. 300- 305. DOI: 10.53374/1993-0135-2023-4-300-305.
4. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2. P. 49–53.
5. Binkley D., Campoe O. C., Gspaltl M. et al. Light absorption and use efficiency in forests: why patterns differ for trees and stands // Forest Ecology and Management. 2013. Vol. 288. P. 5–13.
6. Briegleb P. A. An approach to density measurement in Douglas fir // Journal of Forestry. 1952. Vol. 50. P. 529–536.
7. Buchacher R., Ledermann T. Interregional crown width models for individual trees growing in pure and mixed stands in Austria // Forests. 2020. Vol. 11. Article 114. DOI: 10.3390/f11010114.
8. Choi J., Lorimer C. G., Vanderwerker J. et al. A crown model for simulating long-term stand and gap dynamics in northern hardwood forests // Forest Ecology and Management. 2001. Vol. 152 (1). P. 235–258.
9. Dawkins H. C. Crown diameters: their relation to bole diameter in tropical forest trees // Commonwealth Forestry Review. 1963. Vol. 42. P. 318–333.
10. Fu L., Sharma R. P., Hao K. et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China // Forest Ecology and Management. 2017. Vol. 389. P. 364–373. DOI: 10.1016/j.foreco.2016.12.034.
11. Gering L. R., May D. M. The relationship of diameter at breast height and crown diameter for four species groups in Hardin County, Tennessee // Southern Journal of Applied Forestry. 1995. Vol. 19. P. 177–181.
12. Gominski D., Kariryaa A., Brandt M. et al. Benchmarking individual tree mapping with sub-meter imagery // ISPRS Journal of Photogrammetry and Remote Sensing. 2023 (in press). DOI: 10.48550/arXiv.2311.07981.
13. Hein S., Spiecker H. Crown and tree allometry of open-grown ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) // Agroforestry Systems. 2008. Vol. 73. P. 205–218.
14. Hemery G. E., Savill P. S., Pryor S. N. Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees // Forest Ecology and Management. 2005. Vol. 215. P. 285–294. DOI:10.1016/j.foreco.2005.05.016.
15. Hou R., Chai Z. Predicting crown width using nonlinear mixed-effects models accounting for competition in multi-species secondary forests // Peer Journal. 2022. Vol. 10. Article e13105. http://doi.org/10.7717/peerj.13105.
16. Ishii H. T., Tanabe S. I., Hiura T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems // Forest Science. 2004. Vol. 50(3). P. 342–355.
17. Luo Y., Wang X., Ouyang Z. et al. A review of biomass equations for China's tree species // Earth System Science Data. 2020. Vol. 12(1). P. 21–40. DOI: 10.5194/essd-12-21-2020.
18. Nowak D. J., Dwyer J. F. Understanding the benefits and costs of urban forest ecosystems // Urban and community forestry in the Northeast, 2nd ed. J. E. Kuser (ed.). Springer, 2007. P. 25–46.
19. Philip M. S. Measuring trees and forests, 2nd ed. CAB International: Wallingford, 1994. 310 p.
20. Pretzsch H., Biber P., Uhl E. et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests // Urban Forestry & Urban Greening. 2015. Vol. 14(3). P. 466–479. DOI: 10.1016/j.ufug.2015.04.006.
21. Putz F. E., Parker G. G., Archibald R. M. Mechanical abrasion and inter crown spacing // The American Midland Naturalist. 1984. Vol. 112(1). P. 24–28.
22. Qiu S., Gao P., Pan L. et al. Developing nonlinear additive tree crown width models based on decomposed competition index and tree variables // Journal of Forestry Research. 2023. Vol. 34. P. 1407–1422. DOI: 10.1007/s11676-022-01576-0.
23. Raptis D., Kazana V., Kazaklis A. et al. A crown width-diameter model for natural even-aged black pine forest management // Forests. 2018. Vol. 9(10). Article 610. https://doi.org/10.3390/f9100610.
24. Schmidt M., Hanewinkel M., Kändler G., et al. An inventory-based approach for modeling single-tree storm damage – an experiences with the winter storm of 1999 in southwestern Germany // Canadian Journal of Forest Research. 2010. Vol. 40(8). P. 1636–1652.
25. Seebach Ch. Der modifizierte Buchen-Hochwald- Betrieb // Kritische Blätter für Forst- und Jagdwissenschaft. 1845. Vol. 21. P. 147–185.
26. Sharma R. P., Bilek L., Vacek Z. et al. Modelling crown width-diameter relationship for Scots pine in the central Europe // Trees-Structure and Function. 2017. Vol. 31. P. 1875–1889. DOI: 10.1007/s00468-017-1593-8.
27. Thill A. Qualites des grumes de quelques essences feuillues, et de l’epicea commun // Bulletin de la Société royale forestière de Belgique. 1980. Vol. 87. P. 1–7.
28. Troxel B., Piana M., Ashton M. S. et al. Relationships between bole and crown size for young urban trees in the northeastern USA // Urban Forestry & Urban Greening. 2013. Vol. 12(2). P. 144–153. DOI: 10.1016/j.ufug.2013.02.006.
29. Wang B., Bu Y., Tao G. et al. Quantifying the effect of crown vertical position on individual tree competition: total overlap index and its application in sustainable forest management // Sustainability. 2020. Vol. 12. Article 7498. DOI: 10.3390/su12187498.
30. Wang H., Wan P., Wang Q. et al. Prevalence of inter-tree competition and its role in shaping the community structure of a natural Mongolian Scots pine (Pinus sylvestris var. mongolica) forest // Forests. 2017. Vol. 8. Article 84. DOI: 10.3390/f8030084.
31. Wang J., Jiang L., Xin S. et al. Two new methods applied to crown width additive models: a case study for three tree species in Northeastern China // Annals of Forest Science. 2023. Vol. 80. Article 11. https://doi.org/10.1186/s13595-022-01165-5.
32. West G. B., Brown J. H., Enquist B. J. A general model for the structure and allometry of plant vascular system // Nature. 1999. Vol. 400. P. 664–667. DOI: 10.1038/23251.
33. Whitfield J. All creatures great and small // Nature. 2001. Vol. 413. P. 342–344. DOI: 10.1038/35096683.
34. Yang Y., Huang S. Allometric modelling of crown width for white spruce by fixed-and mixed-effects models // Forestry Chronicle. 2017. Vol. 93. P. 138–147. DOI: 10.5558/tfc2017-020.
35. Zasada M., Stereńczak K., Brach M. Relationship between dbh and crown characteristics derived by airborne laser scanner // Sylwan. 2011. Vol. 155(11). P. 725–735.
Review
For citations:
Usoltsev V.A., Plyukha N.I., Tsepordey I.S. The ratio of crown diameter to stem diameter: generic models of forest-forming species of Eurasia. Conifers of the boreal area. 2024;42(1):36-42. (In Russ.) https://doi.org/10.53374/1993-0135-2024-1-36-42