The use of information technologies in determining the total and partial projective coverage of bryophytes
https://doi.org/10.53374/1993-0135-2023-4-316-324
Abstract
We analyzed the existing methods of determining the abundance of plant species of the living ground cover in the biocenosis and selected the most effective methods for determining bryophyte abundance. Special attention was paid to the use of modern information technologies for full or partial automation of determining the total and partial projective cover of the living ground cover. In our work, we investigated the possibility of using graphics editors having a graphics processing module with the function of auto-extraction, vectorizer programs, CAD computer-aided design systems, which showed good results for accuracy and efficiency of work. Currently, there is no single high-quality specialized program for complete automation of photo plots processing and determination of projective coverage. It is currently impossible to obtain reliable data without operator's correction when digitizing a photoplot and allocating blocks of areas of individual plants. But, using modern information technologies, it is possible to automate many stages of work, which significantly reduces the time spent on the study of plant abundance. Also, our study showed a higher accuracy of determining the projective coverage of bryophytes, and, in fact, the complete elimination of subjectivity, compared to the glance-based methods. The results of the study showed: in spite of the use of several programs, the speed of processing of registration sites with the use of information technologies was significantly higher than the glance-based methods. This makes it possible to recommend the use of modern information technologies in the analysis of bryophyte abundance.
About the Authors
I. Yu. AdamovichRussian Federation
3, Stanke Dimitrova Str., Bryansk, 241037
V. V. Sivakov
Russian Federation
3, Stanke Dimitrova Str., Bryansk, 241037
N. G. Novikova
Russian Federation
3, Stanke Dimitrova Str., Bryansk, 241037
References
1. Anishchenko L. N. Sozoological analysis of cenosises of bryophyte in Bryansk region. The “Vestnik of the Orenburg State University”. 2008; 1: 126-130. (In Russ.). URL: https://elibrary.ru/item.asp?id=9933632.
2. Barinova Ye. S., Chernova S. V. Working with vector graphics in the adobe illustrator CC. Bulletin of Science and Education. 2018; 14-2 (50): 5-7. (In Russ.). URL: https://elibrary.ru/item.asp?id=36321566.
3. Bozhday A. S., Evseeva Yu. I., Gudkov A. A. Selfadaptive software design based on the computing process’s trace technology. University proceedings. Volga region. Technical sciences. 2020; 3(55): 26-35. (In Russ.). DOI: http://doi.org/10.21685/2072-3059-2020-3-3.
4. Buzuk G. N., Sozinov O. V. Calculation accuracy optimization of plant projective cover using grid of squares. Regional geosystems. 2013; 3 (146): 5-7. (In Russ.). URL: https://elibrary.ru/item.asp?id=20885341.
5. Buzuk G. N., Sozinov O. V. Accounting methods of plants projective cover: comparative evaluation using photo sites. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2014; 16; 5-5: 1644-1649. (In Russ.). URL: https://elibrary.ru/item.asp?id=23442771.
6. Bychkov A. D., Kirina I. B., Lygina N. O. Mosses are ancient and important. Science and education. 2022; 5; 2: 354. (In Russ.). URL: https://cyberleninka.ru/article/n/mhi-drevnie-i-vazhnye.
7. Golovanova N. V. Art retouching as an integral part of higher professional education in photography. Symbol of science. 2017; 12: 133-136. (In Russ.). URL: https://elibrary.ru/item.asp?id=30775926.
8. Golub V. B. Ramensky: estimating the ability of plants using their projective cover. Samara Luka: problems of regional and global ecology. 2020; 29; 3: 157-163. DOI: http://doi.org/10.24411/2073-1035-2020-10347.
9. Dvornikov N. S. A method of bitmapped image vectorization. Bulletin of the Saratov State Technical University. 2006;4;1:58-62. (In Russ.). URL: https://elibrary.ru/item.asp?id=12885584.
10. Dudko O. N., Nelubina A. D., Kozevnikova N. U., Khasanov A. R. The review of systems of the automated design. Modern materials, equipment and technologies. 2015; 2(2): 51-54. (In Russ.). URL: https://elibrary.ru/item.asp?id=24393319.
11. Kostyuk Yu. L., Kon A. B., Novikov Yu. L. Algorithms for vectorization of a multicolor raster image based on triangulation and their realization. Tomsk State University Journal. 2003; 280: 275-280. (In Russ.). URL: https://elibrary.ru/item.asp?id=16460252.
12. Kulikova E. V. Converting graphics and text file formats. Bulletin of the Siberian Institute of Business and Information Technologies. 2014; 4(12): 68-74. (In Russ.). URL: https://elibrary.ru/item.asp?id=23045465.
13. Kuchuganov A. V. Bioinspired algorithms for identifying informative features of images. Bulletin of the Tomsk Polytechnic University. 2012; 321; 5: 141-145. (In Russ.). URL: https://elibrary.ru/item.asp?id=18783679.
14. Moskalenko S. V. Wave vectorization algorithm for linear raster images. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2008; 51: 16-21. (In Russ.). URL: https://elibrary.ru/item.asp?id=11692147.
15. Polosukhina D. A., Prokushkin A. S., Masyagina O. V. Plant biodiversity of the lower tiers of pine forests in Central Siberia. Russian Arctic, Special Issue. 2020: 44-50. DOI: http://doi.org/10.24411/2658-4255-2020-12115.
16. Ramensky L. G. Projective accounting and description of vegetation (brief instruction). Byul. of the Institute of Meadow and Swamp Culture named after Prof. V.R. Williams. 1929; 1: 3-55. (In Russ.). URL: https://cyberleninka.ru/article/n/l-g-ramenskiy-otsenkaobiliya-rasteniy-po-ih-proektivnomu-pokrytiyu.
17. Sozinov O. V., Buzuk G. N. Optimization of geobotanical method of points in terms of scaling the accounting plot. Regional geosystems. 2014; 17 (188): 64-69. (In Russ.). URL: https://elibrary.ru/item.asp?id=22411753.
18. Sokolova O. V., Gorodishcheva A. N. The Adobe Photoshop family of products as one of the digital photo processing tools. Actual problems of aviation and cosmonautics. 2012; 2; 8: 320-321. (In Russ.). URL: https://elibrary.ru/item.asp?id=22601988.
19. Stashevsky S. Yu. The vectorizing algorithme of raster images in global case. Proceedings of TUSUR University. 2004; 1(9): 124-129. (In Russ.). URL: https://elibrary.ru/item.asp?id=18082792.
20. Asner G., Heidebrecht K. Spectral Unmixing of Vegetation, Soil and Dry Carbon in Arid Regions: Comparing Multispectral and Hyperspectral Observations. International Journal of Remote Sensing. 2002; 23: 3939-3958. DOI: http://doi.org/10.1080/01431160110115960.
21. Alberdi I., Condés S., Mcroberts R., Winter S. Mean species cover: a harmonized indicator of shrub cover for forest inventories. European Journal of Forest Research. 2018): 137. DOI: http://doi.org/10.1007/s10342-018-1110-7.
22. Bayat B., Tol C., Verhoef W. Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion. Remote Sensing. 2016; 8: 557. 10.3390/rs8070557.
23. Brakenhielm, S., Qinghong, L. Comparison of field methods in vegetation monitoring. Water Air Soil Pollut. 1995; 79: 75-87. DOI: http://doi.org/10.1007/BF01100431.
24. Carlsson A. L., Bergfur J. M. & Milberg P. Comparison of data from two vegetation monitoring methods in semi-natural grasslands. Environ Monit Assess. 2005; 100: 235–248. DOI: http://doi.org/10.1007/s10661-005-6510-8.
25. Fassnacht F., Latifi H., Stereńczak K., Modzelewska A., Lefsky M., Waser L., Straub C., Ghosh A. Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment. 2016; 186: 64-87. DOI: http://doi.org/10.1016/j.rse.2016.08.013.
26. Fassnacht F. E., Latifi H., Stereńczak K., Modzelewska A., Lefsky M., Waser L. T., Straub C., Ghosh A. Review of studies on tree species classification from remotely sensed data // Remote Sensing of Environment. 2016; 186 (1): 64-87. https://www.researchgate.net/publication/312283938_Review_of_studi es_on_tree_species_classification_from_remotely_sensed_data DOI: http://dx.doi.org/10.1016/j.rse.2016.08.013.
27. Floyd D. A., Anderson J. E. A comparison of three methods for estimating plant cover. J. Ecol. 1987; 75: 221-228. V. 9. 17656. https://doi.org/10.1038/s41598-019-53797-9.
28. Aasen H., Burkart A., Bolten A., Bareth G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing. 2015; 108: 245- 259. DOI: http://doi.org/10.1016/j.isprsjprs.2015.08.002.
29. Bergstedt J., Westerberg L., Milberg P. In the eye of the beholder: bias and stochastic variation in cover estimates. Plant Ecol. 2009; 204: 271-283. https://doi.org/10.1007/s11258-009-9590-7.
30. Kowalski K., Okujeni A., Hostert P. A generalized framework for drought monitoring across Central European grassland gradients with Sentinel-2 time series. Remote Sensing of Environment. 2023; 286.113449. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2022.113449.
31. Kattenborn T., Eichel J., Fassnacht F.E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific Reports. 2019. DOI: http://doi.org/10.1038/s41598-019-53797-9.
32. Kowalski K., Okujeni A., Hostert P. A generalized framework for drought monitoring across Central European grassland gradients with Sentinel-2 time series. Remote Sensing of Environment. 2023;286. 113449, ISSN 0034-4257 DOI: http://doi.org/10.1016/j.rse.2022.113449.
33. Lopatin J., Fassnacht F.E., Kattenborn T., Schmidtlein S. Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote Sensing of Environment. 2017;201:12-23. DOI: http://doi.org/10.1016/j.rse.2017.08.031.
34. Drude O. Handbuch der Pflanzengeographie. Stuttgart: J. Engelhorn, 1890. 582S. https://lib.ugent.be/catalog/rug01:002186637.
35. Dmitriev P., Kozlovsky B., Kupriushkin D., Lysenko V., Rajput V., Ignatova M., Tarik E., Kapralova O., Tokhtar V., Singh A., Minkina T., Varduni T., Sharma M, Taloor A., Thapliyal A. Identification of species of the genus Acer L. using vegetation indices calculated from the hyperspectral images of leaves. Remote Sensing Applications: Society and Environment. 2022; 25, 100679. DOI: http://doi.org/10.1016/j.rsase.2021.100679.
36. Thenkabail P., Smith R, De Pauw E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sensing of Environment. 2000;71;2:158-182. DOI: http://doi.org/10.1016/S0034-4257(99)00067-X.
37. Chen Q., Timmermans J., Wen W., van Bodegom P. A multi-metric assessment of drought vulnerability across different vegetation types using high resolution remote sensing. Sci. Total Environ. 2022; 832. Article 154970. DOI: http://doi.org/10.1016/j.scitotenv.2022.154970.
38. Wang R, Gamon J, Cavender-Bares J. Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment. Remote Sensing of Environment. 2022;280. DOI: http://doi.org/10.1016/j.rse.2022.113169.
39. Houborg R, Fisher J, Skidmore A. Advances in remote sensing of vegetation function and traits. International Journal of Applied Earth Observation and Geoinformation. 2015; 43: 1-6. http://hdl.handle.net/10754/620951.
40. Wäldchen J., Rzanny M., Seeland M., Mäder P. Automated plant species identification – Trends and future directions. PLOS Computational Biology. 2018; 14(4): e1005993. DOI: http://doi.org/10.1371/journal.pcbi.1005993.
41. Tan X., Shan Y., Wang X., Liu R., Yao Y. Comparison of the predictive ability of spectral indices for commonly used species diversity indices and Hill numbers in wetlands. Ecological Indicators. 2022; 142. DOI: http://doi.org/10.1016/j.ecolind.2022.109233.
Review
For citations:
Adamovich I.Yu., Sivakov V.V., Novikova N.G. The use of information technologies in determining the total and partial projective coverage of bryophytes. Conifers of the boreal area. 2023;41(4):316-324. (In Russ.) https://doi.org/10.53374/1993-0135-2023-4-316-324