Preview

Conifers of the boreal area

Advanced search

The principle of space-for-time substitution in ecology and the prediction of Picea spp. biomass with climate change

Abstract

Today, human society is faced with problems of a global scale, as a result of which the priorities of environmental research are shifting to the macro-scale level, and ecology is entering the era of “big data”. The authors have created a database of 1550 model Picea spp. trees with measured indicators of tree height, crown width and aboveground biomass growing in the territory of Eurasia. Regression models for aboveground biomass components are calculated, including crown width, tree height, and two climate indicators as independent variables. Based on the theory of spacefor-time substitution, the obtained patterns of changes in aboveground biomass in the territorial climatic gradients of Eurasia are used to predict changes in biomass due to climate shifts. In accordance with the law of the limiting factor by Liebig, it is established that in sufficiently moisture-rich climatic zones, an increase in temperature by 1°C with a constant amount of precipitation causes an increase in biomass, and in water-deficient zones – its decrease; in warm climatic zones, a decrease in precipitation by 100 mm at a constant average January temperature causes a decrease in biomass, and in cold climatic zones – its increase.

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

37, Siberian tract, Yekaterinburg, 620100; 
202a, 8 Marta Str., Yekaterinburg, 620144



I. S. Tsepordey
Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

202a, 8 Marta Str., Yekaterinburg, 620144



References

1. Glebov F. Z., Litvinenko V. I. Dinamika shiriny godichnykh kolets v svyazi s meteorologicheskimi pokazatelyami v razlichnykh tipakh bolotnykh lesov // Lesovedeniye. 1976. № 4. S. 56–62.

2. Danilin I. M., Medvedev Ye. M., Mel'nikov S. R. Lazernaya lokatsiya Zemli i lesa : ucheb. posobiye. Krasnoyarsk: In-t lesa SO RAN, 2005. 182 s.

3. Molchanov A. A. Dendroklimaticheskiye osnovy prognozov pogody. M.: Nauka, 1976. 168 s.

4. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2. P. 49–53.

5. Bergstrom D. M., Wienecke B. C., van den Hoff J. et al. Combating ecosystem collapse from the tropics to the Antarctic // Global Change Biology. 2021. Vol. 27. P. 1–12.

6. Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C. et al. Plant functional trait change across a warming tundra biome // Nature. 2018. Vol. 562. P. 57–80.

7. Blois J. L., Williams J. W., Fitzpatrick M. C. et al. Space can substitute for time in predicting climate-change effects on biodiversity // Proceedings of the National Academy of Sciences USA. 2013. Vol. 110. P. 9374–9379.

8. Cannell M. G. R. Woody biomass of forest stands // Forest Ecology and Management. 1984. Vol. 8. P. 299–312.

9. DeLeo V. L., Menge D. N. L., Hanks E. M. et al. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana // Global Change Biology. 2020. Vol. 26. P. 523–538.

10. Fitzpatrick M. C., Sanders N. J., Ferrier S. et al. Forecasting the future of biodiversity: a test of singleand multispecies models for ants in North America // Ecography. 2011. Vol. 34. P. 836–847.

11. Fu L., Sun W., Wang G. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China // Trees. 2017. Vol. 31. P. 557–573.

12. Johnson E. A., Miyanishi K. Testing the assumptions of chronosequences in succession // Ecology Letters. 2008. Vol. 11. P. 419–431.

13. Ke Y., Quackenbush L. J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing // International Journal of Remote Sensing. 2011. Vol. 32. P. 4725–4747.

14. Kosanic A., Anderson K., Harrison S. et al. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall Peninsula (South West UK) // PLoS ONE. 2018. Vol. 13. e0191021.

15. Li W. K., Guo Q. H., Jakubowski M. K., Kelly M. A new method for segmenting individual trees from the lidar point cloud // Photogrammetric Engineering & Remote Sensing. 2012. Vol. 78. P. 75–84.

16. Liebig J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig : Verlag Vieweg, 1840. (Deutsches Textarchiv http://www.deutschestextarchiv.de/liebig_agricutur_1840. Accessed on 26.11.2019).

17. Niu S., Wang S., Wang J. et al. Integrative ecology in the era of big data. From observation to prediction // Science China Earth Sciences. 2020. Vol. 63. P. 1–14.

18. Odum E. P. Fundamentals of ecology. London, Philadelphia, Toronto : W.B. Saunders Company, 1971. 574 p.

19. Pickett S. Space-for-time substitution as an alternative to long-term studies // G. E. Likens (ed.). Longterm studies in ecology: Approaches and alternatives. New York: Springer, 1989. P. 110–135.

20. Shuman J. K., Shugart H. H., O’Halloran T. L. Sensitivity of Siberian larch forests to climate change // Global Change Biology. 2011. Vol. 2. P. 2370–2384.

21. Usoltsev V. A. Mensuration of forest biomass: Modernization of standard base of forest inventory // Proceedings of the XIX World Congress, IUFRO, Division 4. Canada, Montreal, 1990. P. 79–92.

22. Usoltsev V. A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg: Ural State Forest Engineering University; Botanical Garden of Ural Branch of RAS, 2020. CD-ROM. Retrieved from: https://elar.usfeu.ru/bitstream/123456789/9647/2/Base1_v2_ob.pdf.

23. Usoltsev V. A., Shobairi S. O. R., Tsepordey I. S., Chasovskikh V. P. On some differences in the response of Picea spp. and Abies spp. single-tree biomass structure to changes in temperatures and precipitation in Eurasia // Environment and Ecology. 2020a. Vol. 38. P. 300–315.

24. Usoltsev V. А., Shobairi S. O. R., Tsepordey I. S., Chasovskikh V. P. Аdditive model of aboveground biomass of larch single-trees related to age, DBH and height, sensitive to temperature and precipitation in Eurasia // Journal of Applied Sciences & Environmental Management. 2020b. Vol. 24. P. 1759–1766.

25. Veloz S., Williams J. W., Blois J. L. et al. Noanalog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models // Global Change Biology. 2012. Vol. 18. P. 1698–1713.

26. World Weather Maps, 2007. Retrieved from: https://www.mapsofworld.com/referrals/weather

27. Zeng W. S., Duo H. R., Lei X. D. et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China // European Journal of Forest Research. 2017. Vol. 136. P. 233–249.

28. Zeng W. S., Chen X. Y., Pu Y., Yang X. Y. Comparison of different methods for estimating forest biomass and carbon storage based on National Forest Inventory data // Forest Research. 2018. Vol. 31. P. 66–71.


Review

For citations:


Usoltsev V.A., Tsepordey I.S. The principle of space-for-time substitution in ecology and the prediction of Picea spp. biomass with climate change. Conifers of the boreal area. 2023;41(7):603-608.

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)