Regional features of the basic density of stems above bark in coniferous species of Eurasia
https://doi.org/10.53374/1993-0135-2024-5-7-16
Abstract
The basic density of wood (BD) as the ratio of the mass in dry condition (at 0% humidity) to the "green" volume (the volume of wood in a state of saturation with water) is an useful indicator in studies of the carbon cycle and plant ecology. Data on the wood BD of most species within the region are often unavailable, and averages at the level of genera or families are used. However, there may be significant phylogenetic and geographical variability of BD, and the use of its average values at the genus level is possible only in the absence of regional data. Almost all published data contain information on the BD of the wood itself, excluding bark. If it is necessary to calculate the biomass of stems above bark according to the available volume data having in mind the BD, which differs for wood and bark, then it is impossible to obtain the desired result with sufficient accuracy, since in each specific case the ratios of wood and bark are unknown, and they differ significantly. The presence of huge amounts of data on volume stocks accumulated by traditional forest taxation makes it possible to estimate the dry biomass of stems with the bark over large areas using known values of the stem BD. The purpose of our research was to analyze the regional features of stem wood BD of coniferous tree species of Eurasia. Using the author's database on the qualimetry of trees of forest-forming species of Eurasia, a sample of 3220 trees of five coniferous tree genera (subgenera) of Eurasia was formed. A mixed-type model structure is applied, including numerical (age and stem diameter) and dummy variables encoding geographical regions. Two rankings were performed according to the BD of stem above bark, namely, the ranking of clusters (regions) within the genus (for five-needled pines – within the subgenus) and a species-specific ranking, according to which the maximum values are characterized by larches and the minimum ones by firs. The obtained models and the ranking of species by the value of the BD of the stems above bark can be used to calculate the carbon pool in coniferous stands according to forest inventory data.
About the Authors
V. A. UsoltsevRussian Federation
37, Siberian tract, Yekaterinburg, 620100
202a, 8 Marta str., Yekaterinburg, 620144
N. I. Plyukha
Russian Federation
37, Siberian tract, Yekaterinburg, 620100
I. S. Tsepordey
Russian Federation
202a, 8 Marta str., Yekaterinburg, 620144
E. M. Anhalt
Russian Federation
18, Chelyuskintsev str., Orenburg, 460014
References
1. Melekhov V. I., Babich N. A., Korchagov S. A. Kachestvo drevesiny sosny v kul’turakh [Quality of wood in pine plantations]. Arhangel’sk, AGTU, 2003. 110 p.
2. Poluboyarinov O. I. Plotnost drevesiny [Wood density]. Moscow, Lesnaya Promyshlennost, 1976. 160 p.
3. Usoltsev V. А., Tsepordey I. S. Geograficheskie zakonomernosti izmeneniya bazisnoj plotnosti drevesiny i kory lesoobrazuyushchikh porod Evrazii [Geographical patterns of changes in the basic density of wood and bark of forest-forming species of Eurasia] // Sibirskij Lesnoj Zhurnal (Siberian Journal of Forest Science). 2022. No. 3. P. 59–68 (in Russian with English abstract).
4. Usoltsev V. А., Plyukha N. I., Tsepordey I. S. Modeli konversionno-ob’emnykh koeffitsientov biomassy elovykh drevostoev v geograficheskikh gradientakh Evrazii [Models of Picea spp. biomass conversion and expansion factors in geographical gradients of Eurasia] // Conifers of the boreal area. 2024a. Vol. 42 (1).
5. Usoltsev V. А., Tsepordey I. S., Karaban А. А. et al. Ispol’zovanie regressionnoj modeli pri analize konversionno-ob’emnykh koeffitsientov fitomassy ol’khi v geograficheskikh gradientakh Evrazii [The use of a regression model in the analysis of conversion and expansion factors of alder biomass in geographical gradients of Eurasia] // Lesnoy vestnik / Forestry Bulletin. 2024b. Vol. 28(2).
6. Achard F., Beuchle R., Mayaux P. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010 // Global Change Biology. 2014. Vol. 20. P. 2540–2554.
7. Baker T. R., Phillips O. L., Malhi Y. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass //. Global Change Biology. 2004. Vol. 10. P. 545–562.
8. Chave J., Andalo C., Brown S. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests // Oecologia. 2005. Vol. 145. P. 87–99.
9. Chave J., Muller-Landau H. C., Baker T. R. et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species // Ecological Applications. 2006. Vol. 16. P. 2356–2367.
10. Chave J., Coomes D., Jansen S. et al. Towards a worldwide wood economics spectrum // Ecology Letters. 2009. Vol. 12. P. 351–366.
11. Chowdhury Q., Sarker S. K., Ali B. et al. Accounting intra-tree radial wood density variation provides more accurate above ground mangrove biomass estimation in the Sundarbans // Research Square. 2024. P. 1-26 (preprint) DOI: 10.21203/rs.3.rs-3505676/v1.
12. Diaz S., Kattge J., Cornelissen J. H. C. et al. The global spectrum of plant form and function // Nature. 2016. Vol. 529. P. 167–171.
13. Flores O, Coomes D. A. Estimating the wood density of species for carbon stock assessments // Methods in Ecology and Evolution. 2011. Vol. 2. P. 214–220.
14. Fu L., Sharma R. P., Hao K. et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China // Forest Ecology and Management. 2017. Vol. 389. P. 364–373.
15. Greenwood S., Ruiz-Benito P., Martínez-Vilalta J. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area // Ecology Letters. 2017. Vol. 20. P. 539–553.
16. Hansen M. C., Potapov P. V., Moore R. et al. High-resolution global maps of 21st-century forest cover change // Science. 2013. Vol. 342. P. 850–853.
17. Kunstler G., Falster D., Coomes D. A. et al. Plant functional traits have globally consistent effects on competition // Nature. 2016. Vol. 529. P. 204–207.
18. Lachenbruch B., McCulloh K. A. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant // New Phytologist. 2014. Vol. 204. P. 747–764.
19. Lewis S. L., Lopez-Gonzalez G., Sonké B. et al. Increasing carbon storage in intact African tropical forests // Nature. 2009. Vol. 457. Article 1003.
20. McGroddy M. E., Daufresne T., Hedin L. O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios // Ecology. 2004. Vol. 85. P. 2390–2401.
21. Pan Y., Birdsey R. A., Fang J. et al. A large and persistent carbon sink in the world’s forests // Science. 2011. Vol. 333. P. 988–993.
22. Saatchi S. S., Harris N. L., Brown S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents // Proceedings of the National Academy of Sciences. 2011. Vol. 108. P. 9899–9904.
23. Sallenave P. Propriétés physiques et mécaniques des bois tropicaux de l’Union française. Centre technique forestier tropical, Nogent-sur-Marne, France. Nogent-surMarne : CTFT, 1955. 128 p. https://doi.org/10.18167/agritrop/00359.
24. Shmulsky R., Jones P. Forest products and wood science. Oxford, UK: Wiley-Blackwell, 2011. 496 р.
25. Teegalapalli K., Pandey C. K., Osuri A. M. et al. Understanding the variation in wood densities of trees and its implications for carbon assessments // BioRxiv, 2019. Article 523480. doi: https://doi.org/10.1101/523480.
26. Thibaut B., Gril J., Fournier M. Mechanics of wood and trees: some new highlights for an old story // Comptes Rendus de l Académie des Sciences – Series IIB – Mechanics. 2001. Vol. 329(9). P. 701–716. DOI: 10.1016/S1620-7742(01)01380-0
27. Usoltsev V. A. Stem taper, density and dry matter content in biomass of trees growing in Central Eurasia: monograph. Yekaterinburg: Ural State Forest Engineering University, Botanical Garden of Ural Branch of RAS, 2020. Available at:https://elar.usfeu.ru/handle/123456789/9649 (accessed: 20.11.2021).
28. Vieilledent G., Vaudry R., Andriamanohisoa S. F. D. et al. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models // Ecological Applications. 2012. Vol. 22. P. 572–583.
29. Vieilledent G., Gardi O., Grinand C. et al. Bioclimatic envelope models predict a decrease in tropical forest carbon stocks with climate change in Madagascar // Journal of Ecology. 2016. Vol. 104. P. 703–715.
30. Vieilledent G., Fischer F. J., Chave J. et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database // American Journal of Botany. 2018. Vol. 105(10). P. 1653–1661.
31. Violle C., Navas M. L., Vile D. et al. Let the concept of trait be functional! // Oikos. 2007. Vol. 116. P. 882–892.
32. Westoby M., Wright I. J. Land-plant ecology on the basis of functional traits // Trends in Ecology & Evolution. 2006. Vol. 21. P. 261–268.
33. Williamson G. B., Wiemann M. C. Measuring wood specific gravity …correctly // American Journal of Botany. 2010. Vol. 97(3). P. 519–524.
34. Zanne A. E., Lopez-Gonzalez G., Coomes D. A. et al. Global wood density database. Data from: Towards a worldwide wood economics spectrum // Dryad Digital Repository. 2009. Available at: https://doi.org/10.5061/dryad.234 (date of visit: 20.11.2021).
Review
For citations:
Usoltsev V.A., Plyukha N.I., Tsepordey I.S., Anhalt E.M. Regional features of the basic density of stems above bark in coniferous species of Eurasia. Conifers of the boreal area. 2024;42(5):7-16. (In Russ.) https://doi.org/10.53374/1993-0135-2024-5-7-16