Preview

Conifers of the boreal area

Advanced search

Allometric models of biomass and morphology of pinus sibirica Du Tour trees in the Urals and the problem of multicollinearity of factors

https://doi.org/10.53374/1993-0135-2025-2-46-54

Abstract

The use of correct allometric models is driven by the growing need for information on forest biomass to implement climate change policies and assess the carbon deposition capacity of forests. Since allometric models of biomass with a different number of predictive variables are proposed in the literature, and without taking into account the multicollinearity of the latter, an analysis of three- and two-factor models for the presence of multicollinearity was performed for the first time. For this purpose, the authors obtained actual data on the structure of aboveground biomass and morphology of Siberian cedar (Pinus sibirica Du Tour) for the forests of the Urals in the amount of 77 model trees. It has been established that the currently available database on the biomass of Siberian cedar trees does not make it possible to build correct multifactorial models under the condition of multicollinearity. A system of simple (onefactor) allometric models of the production and morphological parameters of Siberian cedar, adequate at a probability level of p < 0.05 and higher, is proposed. Models of production indicators can be used to assess the biological productivity of cedar forests per unit area in age dynamics and in modeling their carbon deposition capacity. Models of morphological indicators can be used in the analysis of the morphological structure of the canopy of cedar forests, including using deep learning methods. When using the available literature data, the specificity of the ratio of root biomass to aboveground biomass (R:S ratio) in age dynamics has been revealed for young cedar plantations. This ratio decreases from 0.43 to 0.17 in the age range from 4 to 21 years. 

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Ural State University of Economics
Russian Federation

37, Siberian tract, Yekaterinburg, 620100

62/45, 8 Marta/ Narodnaya Volya str., Yekaterinburg, 620144



G. G. Terekhov
Botanical Garden of the Ural Branch of the Russian Academy of Sciences
Russian Federation

202a, 8 Marta Str., Yekaterinburg, 620144



References

1. Baryshevcev V. Kedrovniki – plodovye sady // Lesnoj zhurnal. 1917. Vyp. 1-3. S. 35–55.

2. Bratilova N. P., Matveeva R. N., Butorova O. F. Biologiya i formovoe raznoobrazie sosny kedrovoj sibirskoj // Eko-Potencial. 2014. № 1 (5). S. 120–127.

3. Vorob’ev V. N. Biologicheskie osnovy kompleksnogo ispol’zovaniya kedrovyh lesov / otv. red. I. V. Semechkin. Novosibirsk : Nauka : Sib. otd-nie, 1983. 254 s.

4. Vorob’ev V. N., Hamitov R. S. Vliyanie sostoyaniya fillotaksisa na pokazateli rosta seyancev kedra sibirskogo // Vestnik Irkutskoj gosudarstvennoj sel’skohozyajstvennoj akademii. 2015. Vyp. 69. S. 46–52.

5. Gurskij A. A. Forma i polnodrevesnost’ stvolov sosny v iskusstvennyh nasazhdeniyah lentochnyh borov Kazahstana // Vestnik sel’skohozyajstvennoj nauki Kazahstana. 1972. № 11. S. 91–94.

6. Il’yushenko A. F. Sezonnoe razvitie listovoj poverhnosti i biologicheskaya produktivnost’ v bereznyakah // Lesovedenie. 1968. № 2. S. 3–13.

7. Matveeva R. N., Butorova O. F., Bratilova N. P. Koroleva tajgi. Krasnoyarsk : SibGTU, 2003. 144 s.

8. Maurin’ A. M., Liepa I. Ya., Drike A. Ya. i dr. Prognozirovanie plodonosheniya drevesnyh rastenij // Optimizaciya ispol’zovaniya i vosproizvodstva lesov SSSR. M. : Nauka ,1977. S. 50–53.

9. Nalimov V. V. Teoriya eksperimenta. M. : Nauka, 1971. 208 s.

10. Repina E. G., Cypin A. P., Zajchikova N. A., Shirnaeva S. Yu. Ekonometrika v tablichnom redaktore MS Excel [Elektronnyj resurs] : praktikum. Samara : Izd-vo Samar. gos. ekon. un-ta, 2019. ISBN 978-5-94622-970-8. (https://rusneb.ru/catalog/000199_000009_010271621/).

11. Usol’cev V. A. Vzaimosvyaz’ nekotoryh taksacionnyh elementov krony i stvola u berezy pushistoj v Severnom Kazahstane // Vestnik sel’skohozyajstvennoj nauki Kazahstana. 1971. № 2. S. 80–84.

12. Usol’cev V. A. Modelirovanie struktury i dinamiki fitomassy drevostoev. Krasnoyarsk : Izd-vo Krasnoyarskogo un-ta, 1985. 191 s. (http://elar.usfeu.ru/handle/123456789/3353).

13. Usol’cev V. A. Rost i struktura fitomassy drevostoev. Novosibirsk : Nauka, Sibirskoe otd-nie, 1988. 253 s.

14. Usol’cev V. A. O primenenii regressionnogo analiza v lesovodstvennyh zadachah // Lesnaya taksaciya i lesoustrojstvo. 2004. № 1 (33). S. 49–55.

15. Usol’cev V. A. Fitomassa model’nyh derev’ev lesoobrazuyushchih porod Evrazii : baza dannyh, klimaticheski obuslovlennaya geografiya, taksacionnye normativy. Ekaterinburg : Ural’skij gosudarstvennyj lesotekhnicheskij universitet, 2016. 336 s.

16. Usol’cev V. A. Fitomassa model’nyh derev’ev dlya distancionnoj i nazemnoj taksacii lesov Evrazii : Monografiya. Elektronnaya baza dannyh. 3-e dopolnennoe izdanie. Ekaterinburg : Botanicheskij sad UrO RAN, Ural’skij gosudarstvennyj lesotekhnicheskij universitet, 2023. 1 elektron. opt. disk (CD-ROM). ISBN 978-5-82950861-6 (https://elar.usfeu.ru/handle/123456789/12451).

17. Usol’cev V. A., Markovskij V. I., Maksimov S. V. i dr. O planirovanii passivnogo eksperimenta pri ocenke fitomassy lesov // Nauchnye trudy. Vyp. 2. Ekaterinburg : UGLTU, 2002. S. 15–22.

18. Usol’cev V. A., Cepordej I. S. Morfologiya krony lesoobrazuyushchih rodov Evrazii: allometriya i ranzhirovanie // Hvojnye boreal’noj zony. 2023b. T. 41, № 6. S. 504–514. DOI: 10.53374/1993-0135-2023-6-504-514.

19. Usol’cev V. A., Vorobejchik E. L., Bergman I. E. Biologicheskaya produktivnost’ lesov Urala v usloviyah tekhnogennogo zagryazneniya: Issledovanie sistemy svyazej i zakonomernostej. Ekaterinburg : UGLTU, 2012. 365 s.

20. Usol’cev V. A., Kovyazin V. F., Cepordej I. S. i dr. Biomassa assimilyacionnogo apparata lesov Evrazii: korrekciya metodov empiricheskogo modelirovaniya // Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii. 2020. Vyp. 232. S. 50–78. DOI: 10.21266/2079-4304. 2020.232.50-78

21. Usol’cev V. A., Cepordej I. S., Chasovskih V. P. Modeli dlya ocenki biomassy derev’ev lesoobrazuyu-shchih vidov po diametru krony v svyazi s ispol’zovaniem dronov // Hvojnye boreal’noj zony. 2023a. T. 41. № 4. S. 300–305.

22. Usol’cev V. A., Shcherba N. P. Struktura fitomassy kedrovyh sosen v plantacionnyh kul’turah. Krasnoyarsk : Izd-vo SibGTU, 1998. 134 s. (http://elar.usfeu.ru/handle/123456789/3377).

23. Usol’cev V. A., Shchukin A. V. O geografii i ekologii kedra sibirskogo // Lesnaya taksaciya i lesoustrojstvo. Krasnoyarsk : SibGTU, 2003. № 1(32). S. 115–119.

24. Abdullah N., Jubok Z. H. Multicollinearity remedial techniques in model-building // Matematika. 2013. Vol. 29. No. 1b. P. 107–115.

25. Bartkowicz L., Paluch J. Morphological plasticity of six tree species with different light demands growing in multi-layered deciduous forests in Central Europe // European Journal of Forest Research. 2023. Vol. 142 (5). P. 1177–1195.

26. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2 (1). P. 49–53.

27. Basu I., Maji S. Multicollinearity correction and combined feature effect in Shapley values // Proceedings AI 2021: Advances in Artificial Intelligence, 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2–4, 2022. P. 1–12. (Lecture Notes in Computer Science. 2022.)

28. Basuki T. M., Van Laake P. E., Skidmore A. K. et al. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests // Forest Ecology and Management. 2009. Vol. 257. P. 1684–1694.

29. Bi H., Turner J., Lambert M. J. Additive biomass equations for native eucalypt forest trees of temperate Australia // Trees. 2004. Vol. 18. P. 467–479.

30. Bombelli A., Avitabile V., Belelli Marchesini L. et al. Assessment of the status of the development of the standards for the terrestrial essential climate variables: biomass. Food and Agriculture Organization – Global Terrestrial Observation System, Rome, 2009. 86 p.

31. Bondé L., Ganamé M., Ouédraogo O. et al. Allometric models to estimate foliage biomass of Tamarindus indica in Burkina Faso // Southern Forests: a Journal of Forest Science. 2017. Vol. 80. P. 143–150.

32. Brown S. Measuring carbon in forests: current status and future challenges // Environmental Pollution. 2001. Vol. 116. P. 363–372.

33. Chave J., Andalo C., Brown S. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests // Oecologia. 2005. Vol. 145. P. 87–99.

34. Draper N. R., Smith H. Applied regression analysis. New York, NY : Wiley, 2014. 736 p.

35. Falster D., Duursma R., Ishihara M. et al. BAAD: a Biomass And Allometry Database for woody plants // Ecology. 2015. Vol. 96(5). P. 1445 (Ecological Archives E096-128).

36. Fehrmann L., Kleinn C. General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe // Forest Ecology and Management. 2006. Vol. 236. P. 412–421.

37. Harmon I., Weinstein B., Bohlman S. et al. A neurosymbolic framework for tree crown delineation and tree species classification // Remote Sensing. 2024. Vol. 16. Article 4365.

38. Joosten R., Schumacher J., Wirth C. et al. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany // Forest Ecology and Management. 2004. Vol. 189. P. 87–96.

39. Jucker T., Fischer F. J., Chave J. et al. Tallo – a global tree allometry and crown architecture database // Global Change Biology. 2022. Vol. 28. P. 5254–5268.

40. Kalliovirta J., Tokola T. Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information // Silva Fennica. 2005. Vol. 39. P. 227–248.

41. Kittredge J. Estimation of amount of foliage of trees and stands // Journal of Forestry. 1944. Vol. 42. No. 11. P. 905–912.

42. Lin K., Lyu M., Jiang M. et al. Improved allometric equations for estimating biomass of the three Castanopsis carlesii H. forest types in subtropical China // New Forests. 2017. Vol. 48. P. 115–135.

43. Marcoulides K. M., Raykov T. Evaluation of variance inflation factors in regression models using latent variable modeling methods // Educational and Psychological Measurement. 2019. Vol. 79(5). P. 874–882.

44. Návar J. Biomass component equations for Latin American species and groups of species // Annals of Forest Science. 2009. Vol. 66. P. 208–216.

45. Návar J. Alometría para biomasa en especies arbóreas del noroeste de México // Tropical and Subtropical Agroecosystems. 2010. Vol. 12. P. 507–519.

46. Oke J. A., Akinkunmi W. B., Etebefia S. O. Use of correlation, tolerance, and variance inflation factor for multicolinearity test // Global Scientific Journals, 2019. Vol. 7(5). P. 652–659.

47. Pretzsch H. The effect of tree crown allometry on community dynamics in mixed-species stands versus monocultures. A review and perspectives for modeling and silvicultural regulation // Forests. 2019. Vol. 10. Article 810.

48. Pretzsch H. Tree growth as affected by stem and crown structure // Trees. 2021. Vol. 35. P. 947–960.

49. Schmucker J., Uhl E., Steckel M. et al. Crown allometry and growing space requirements of four rare domestic tree species compared to oak and beech: implications for adaptive forest management // European Journal of Forest Research. 2022. Vol. 141. P. 587–604.

50. Schumacher F. X., Hall F. S. Logarithmic expression of timber-tree volume // Journal of Agricultural Research. 1933. Vol. 47. No. 9. P. 719–734.

51. Segura M., Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica // Biotropica. 2005. Vol. 37. P. 2–8.

52. Shumie A., Alemu A., Abebe G. et al. Allometric equations for estimation of above- and below-ground biomass of Acacia mearnsii in northwestern Ethiopia // Forest Science and Technology. 2024. Vol. 20. No. 3. P. 279–285.

53. Sukhbaatar G., Chimednyam D., Nachin B. et al. Allometric equations for the estimation of above- and belowground biomass for Larix sibirica Ledeb. in Northern Mongolia // Forest Science and Technology. 2023. Vol. 19. P. 12–20.

54. Wirth C., Schumacher J., Schulze E. D. Generic biomass functions for Norway spruce in central Europe – a meta-analysis approach toward prediction and uncertainty estimation // Tree Physiology. 2003. Vol. 24. P. 121–139.

55. Xiang W., Liu S., Deng X. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China // Ecological Research. 2011. Vol. 26. P. 697–711.

56. Xiang W., Zhou J., Ouyang S. et al. Speciesspecific and general allometric equations for estimating tree biomass components of subtropical forests in southern China // European Journal of Forest Research. 2016. Vol. 135. P. 963–979.

57. Yoo W., Mayberry R., Bae S. et al. A study of effects of multicollinearity in the multivariable analysis // International Journal of Applied Science and Technology. 2014. Vol. 4(5). Article 9.

58. Zianis D., Mencuccini M. On simplifying allometric analyses of forest biomass // Forest Ecology and Management. 2004. Vol. 187. P. 311–332.


Review

For citations:


Usoltsev V.A., Terekhov G.G. Allometric models of biomass and morphology of pinus sibirica Du Tour trees in the Urals and the problem of multicollinearity of factors. Conifers of the boreal area. 2025;43(2):46-54. (In Russ.) https://doi.org/10.53374/1993-0135-2025-2-46-54

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-0135 (Print)