УДК 630.11

DOI: 10.53374/1993-0135-2025-3-15-20

Хвойные бореальной зоны. 2025. Т. XLIII, № 3. С. 15–20

ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЛЕСОСТЕПНЫХ АГРОЛАНДШАФТОВ ЮЖНОЙ ЧАСТИ БОРЕАЛЬНОЙ ЗОНЫ ПРИЕНИСЕЙСКОЙ СИБИРИ

В. А. Безруких¹, Е. В. Авдеева², Н. В. Цыганкова³, Н. А. Лигаева⁴, О. А. Кузнецова⁴

¹Красноярский государственный педагогический университет им. В.П. Астафьева Российская Федерация, 660049, Красноярск, ул. А. Лебедевой, 89
 ²Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева Российская Федерация, 660037, г. Красноярск, просп. им. газеты «Красноярский рабочий», 31
 E-mail: e.v.avdeeva@gmail.com

³КГБПОУ «Красноярский политехнический техникум»
 Российская Федерация, 660079, Красноярск, ул. Александра Матросова, д. 20
 ⁴Сибирский федеральный университет
 Российская Федерация, 660099, Красноярск, просп. Свободный, 79

Аннотация. В статье рассматриваются основные особенности формирования агроландшафтов лесостепей южной части Приенисейской Сибири. Представлены природная и экологическая характеристики: Минусинской, Назаровской, Чебаково-Балахтинской, Сыдо-Ирбинской впадин. Представлена оценка климатических
условий по таким характеристикам как годовое количество осадков, суммы средних суточных температур
воздуха выше 10 °С, продолжительность безморозного периода, коэффициент континентальности, гидротермический коэффициент, средняя температура января, среднемесячная июля, среднегодовая; подстилающих горных пород; почв, рельефа; растительности, возможность использования данных природных ресурсов
для сельскохозяйственного производства ранних и среднеспелых сельскохозяйственных культур. По каждому
району представлена лесистость с учетом лесополос, распаханность от общей площади агроландшафта, луга
и степи от общей территории.

Ключевые слова: агроландшафт, районирование, лесостепи Приенисейской Сибири, Минусинская котловина, Назаровская впадина, Чебаково-Балахтинская впадина, Сыдо-Ирбинская впадина, Сыда, Туба.

Conifers of the boreal area. 2025, Vol. XLIII, No. 3, P. 15-20

ECOLOGICAL FEATURES OF FOREST-STEPPE AGROLANDSCAPES OF THE SOUTHERN PART OF THE BOREAL ZONE OF YENISEI SIBERIA

V. A. Bezrukikh¹, E. V. Avdeeva², N. V. Tsygankova³, N. A. Ligaeva⁴, O. A. Kuznetsova⁴

¹Krasnoyarsk State Pedagogical University named after V. P. Astafyev 89, A. Lebedeva str., Krasnoyarsk, 660049, Russian Federation ²Reshetnev Siberian State University of Science and Technology
 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation E-mail: e.v.avdeeva@gmail.com
 ³KSBPEI "Krasnoyarsk Polytechnic College"

 20, Alexandra Matrosova St., Krasnoyarsk, 660079, Russian Federation ⁴Siberian Federal University
 79, Svobodny Av., Krasnoyarsk, 660099, Russian Federation

Annotation. The article considers the main features for the formation of agrolandscapes of forest-steppes in the southern part of Yenisei Siberia. The natural and ecological characteristics of the Minusinsk, Nazarovo, Chebakovo-Balakhtinskaya, Sydo-Irbinskaya hollows are presented. An assessment of climatic conditions is presented based on such characteristics as annual precipitation, the sum of average daily air temperatures above 10 °C, the duration of the frost-free period, the continentality coefficient, the hydrothermal coefficient, the average January temperature, the average monthly July temperature, the average annual; underlying rocks; soils, relief; vegetation, the possibility of using these natural resources for agricultural production of early and mid-season crops. For each region, forest cover is presented taking into account forest belts, ploughed area from the total area of the agrolandscape, meadows and steppes from the total territory.

Keywords: agrolandscape, zoning, forest-steppes of Yenisei Siberia, Minusinsk basin, Nazarovskaya hollow, Chebakovo-Balakhtinskaya hollow, Sydo-Irbinskaya hollow, Syda, Tuba.

Агроландшафтное районирование необходимо для построения всей структуры сельскохозяйственного природопользования. Десятилетиями оно основывалось на принципах зонального районирования. В настоящее время разработана концепция оптимального воздействия на агроландшафт. Для этой цели были проведены агроландшафтное районирование края и агротехническая оценка геокомплексов различного ранга, требующих ограничения сельскохозяйственного производства или полного прекращения эксплуатации [1].

При ландшафтном районировании Красноярского края выделяются следующие территориальные единицы: физико-географические страны, ландшафтные области и агроландшафты (ландшафты). Агроландшафтное районирование проводится на основе физико-географического районирования. Агроландшафт отличается от природного ландшафта лишь тем, что он испытал на себе воздействие сельскохозяйственного производства и его компоненты нарушены, в той или иной степени.

В соответствии с ландшафтной концепцией поверхность Земли образуют взаимосвязанные соподчиненные природные территориальные комплексы (ПТК) различной величины и сложности: физикогеографические страны, зоны, подзоны, ландшафты, местности, урочища, подурочища, фации. Местности, урочища, подурочища и фации являются морфологическими частями агроландшафта, образуя специфическую его структуру. Единицы более крупного ранга, чем агроландшафт, называются таксономическими физико-географическими единицами. Это деление связано с индивидуальностью таксономических единиц, их внутренним устройством, методикой выявления [2].

За последние годы учениками Н. А. Солнцева сделаны уточнения и дополнения в иерархии морфологических единиц. Кроме того, внесено много нового, экспериментального крупными учеными-ландшафтоведами Д. Л. Армандом, Ф. Н. Мильковым, А. Г. Исаченко, В. Б. Сочавой, С. В. Викторовым, Б. В. Виноградовым, Е. А. Востоковой и др. В основе метода исследования сельскохозяйственных территорий для целей агроландшафтного районирования лежит более глубокое изучение истории развития территории, что позволяет проследить зарождение геокомплексов различного ранга и последующее их обособление [3; 4].

Районирование территории осуществляется путем выявления объективно существующих природных территориальных единств. Основными принципами районирования, которыми часто пользуются географы, являются: зональный, генетической однородности, геологической и тектонической однородности (однородности литогенной основы), территориальной общности, структурной целостности, дискретности и индивидуальности и др. При выявлении геокомплексов, их дешифрировании и картографировании следует руководствоваться этими подходами [5; 6].

Агроприродный потенциал Приенисейской Сибири (включающий большую часть Средне-Сибирского плоскогорья, восточную часть Западно-Сибириской низменности и прдгорья Алтая-Саянской горной

страны, представляющей существенную часть земельного и почвенного фонда России. Основную территорию Приенисейской Сибири занимает Красноярский край, относящийся к крупным производителям аграрной продукции в стране (его удельный вес в аграрном секторе Восточной Сибири составляет около половины: он производит около 50 % зерна, 40 % мяса и яиц и т. д.) [7; 8]. В данной статье рассмотрим агроландшафты Алтае-Саянской горной страны в пределах Минусинской межгорной котловины.

Алтае-Саянская горная система выделяется как физико-географическая страна. Между Западным и Восточным Саянами находится Минусинский межгорный прогиб с системой лесостепных и степных котловин и горными перемычками между ними. Абсолютные высоты в котловинах сильно варьируют от 300 до 800 м. В настоящее время на наиболее выровненных поверхностях прогиба степи распаханы. Частично бессистемными вырубками и действиями сельскохозяйственного производства сведена лесная растительность [9; 10]. Климат резко континентальный, засушливый, с холодной малоснежной зимой и теплым летом. Средняя температура января -19...-21°C, июля 21 °C. Количество осадков уменьшается от периферии котловин к центру – от 500-600 до 250–350 мм в год.

Минусинский межгорный прогиб отрогами делится на котловины: Назаровскую, Чебаково-Балахтинскую, Сыдино-Ербинскую и Южно-Минусинскую. Самая северная степь и лесостепь Алтае-Саянских гор расположены в Назаровской котловине. В степях Южно-Минусинской котловины преобладают ковыльнотипчаковые и разнотравно-луговые степи. В злаковых группировках господствуют ковыль, типчак, тонконог и змеевка. Агроландшафты степей и лесостепей в межгорном прогибе, как и в целом по Сибири, различаются по структуре, строению и климатическим параметрам.

Горные сооружения, между которыми расположен Минусинский прогиб, придают ветрам более определенное направление. Особенно это характерно для Южно-Минусинской котловины, куда прежде всего попадают воздушные массы, вырывающиеся из узкого коридора между Кузнецким Алатау и Западным Саяном. Господствующими ветрами в Южно-Минусинской котловине почти во все времена года являются юго-западные. В конце зимы и весной небольшую часть времени (до 20 %) дуют западные ветры. В летнее время наблюдаются частично северные и северовосточные. Наиболее сильные ветры приходятся па весенний и осенний периоды [11].

Сложность геологического строения и большое разнообразие геоморфологических комплексов обусловливают значительную пестроту условий экзогенного рельефообразования в разных агроландшафтах Минусинского межгорного прогиба. В его пределах чередуются как низкогорные, так и равнинные агроландшафты. С экологической точки зрения нельзя не отметить, что на распаханных территориях Минусинского прогиба часто возникают «черные бури», которые наносят существенный ущерб сельскому хозяйству [3]. Во второй половине зеленой весны идет посев

овса. В центре степных котловин он начинается 14—18 мая. Всходы пшеницы появляются 19—24 мая. Сев кукурузы производят через 2—3 дня после сева овса. Полное лето наступает 7 июля. Картофель зацветает 24 июля. Восковая спелость ржи отмечается 2 августа, а пшеницы — 11—12 августа. Золотая осень наступает 4 сентября в сухой степи и 2 сентября в настоящей степи.

Агроландшафты Минусинского межгорного прогиба по своему строению и структуре весьма различаются. Можно отметить две закономерности в размещении агроландшафтов. Во-первых, располагаясь с юга на север в широтном направлении, агроландшафты различаются в зональном плане. Например, в Южно-Минусинской котловине, в ее юго-западной части, преобладают сухие степи, а в Назаровской котловине — лесостепи. В котловинах, как правило, агроландшафты в зональном плане размещаются концентрически: в центре котловины стенные агроландшафты, ближе к периферии — лесостепные, а по окраинам, в предгорьях — подтайга.

Агроландшафты Назаровской впадины. В Назаровской впадине нами выявлено два разных по строению и структуре ландшафта — Назаровский котловинно-равнинный и Холмогорский низкогорный.

Назаровский – равнины слабовсхолмленные с овражно-балочной сетью, с осиново-березовыми разнотравно-злаковыми колками на серых лесных почвах, с разнотравно-ковыльными степями и сельскохозяйственными угодьями на черноземах выщелоченных и обыкновенных. Расположен в котловине между кряжами Арга и Солгонским и большей своей территорией совпадает с Назаровским районом. По природным условиям котловина относится к типичной северной лесостепи. Западная часть котловины несколько опущена по отношению к восточной, где расчлененность территории значительна. Территория сложена широкими плосковершинными увалами с S-образными склонами. Почвообразующие породы агроландшафта представлены покровными и лессовидными суглинками. Лесистость агроландшафта 15 % [13]. Почвенный покров образуют черноземы среднегумусные среднемощные выщелоченные и черноземы обыкновенные в сочетании с серыми лесными почвами. Леса в основном мелколиственные, по изредка встречаются сосновые по песчаным террасам и темнохвойные, но поймам небольших рек. Распаханность агроландшафта 70 %. Пастбища размещаются по лесным колкам и горным степям. Для данного агроландшафта необходимо подбирать высокоустойчивые сорта зерновых культур.

Холмогорский – денудационно-эрозионные структурные, холмисто-увалистые и волнистые низкогорья и равнины между ними, сложенные терригенно-карбонатными породами, с разнотравно-злаковыми луговыми степями и остепненными лугами и сельско-хозяйственными угодьями на выщелоченных черноземах в сочетании с мелколиственными лесами на серых лесных почвах. Размещается в Шарыповском районе. Здесь часто чередуются куэстовые низкогорья и холмогорья с межкуэстовыми понижениями. Понижения освоены сельским хозяйством. Низкогорья

грядовые, с узкими водоразделами, с конусовидными и куполовидными вершинами, с березово-осиновыми и пихтовыми крупнотравными лесами на серых лесных почвах. Климатические условия характеризуются повышенным количеством атмосферных осадков — до 500 мм в год, суммами активных температур выше 10 °C от 1400 до 1600 °C, средними температурами января —18 °C, июля — от 16 до 18 °C [14]. Межгорные равнины с озерами освоены сельским хозяйством на 70 % площади агроландшафта. По продуктивности почвы агроландшафта относятся к достаточно продуктивным: 46 % от площади агроландшафта занимают хорошие почвы, 44 % — посредственные и 10 % — неудовлетворительные.

Агроландшафты Чебаково-Балахтинской впадине сформировано три агроландшафта: Ужурский соотношение можно выразить как 1:3. На повышенных элементах рельефа наблюдается сильная и средняя эрозия.

Кома-Кульчекский – предгорья, сложенные терригенно-карбонатными и интрузивными породами, с мелколиственно-сосновыми злаково-разнотравными лесами на серых лесных почвах и злаковоразнотравными луговыми степями и полями на черноземах. Занимает правобережье Енисея, бассейны рек Кома и Убей. Размещается в центре Новоселовского района. Агроландшафт котловинно-низкогорный, лесостепной. Сельскохозяйственные угодья занимают 60 % его площади. Распаханность территории слабая – 15 %. Лесистость составляет 60 %. Сенокосы и пастбища занимают 50 % территории агроландшафта. Пониженная придолинная часть агроландшафта имеет холмисто-увалистый рельеф. В восточной части рельеф гористо-увалистый. Почвы – слабовыщелоченные среднемощные среднегумусные черноземы в сочетании с темно-серыми и серыми лесными почвами. Площадь пахотных угодий может быть увеличена на 40 % за счет распашки залежей и раскорчевки лесов. Расширению сельскохозяйственного производства способствуют экологические условия. Среднегодовая температура -1,9 °C, средняя температура января -21 °C, июля 17,7 °C. Сумма температур выше 10 °C составляет 1569 °C. Годовая сумма осадков 390 мм.

Агроландшафт Сыдо-Ербинской впадины. Сыдо-Ербииская впадина занимает незначительную площадь, в связи с чем здесь сформирован лишь один котловинный агроландшафт.

Сыдо-Ербинский – котловинный агроландшафт с денудационными увалисто-холмистыми равнинами, сложенными эффузивно-осадочными породами, с богато разнотравно-ковыльными степями и сельхозугодьями. Занимает правобережье Енисея в южной части Новоселовского района. Агроландшафт большей частью степной. Лесистость с учетом лесополос менее 15 %. Распаханность территории агроландшафта 80 %, степей 5% от общей территории агроландшафта. Преобладает степной тип урочищ. Почвы являются высокоплодородными, неустойчивыми, размещаются на волнистых равнинах и покатых склонах. Эрозия слабая. Мощность гумусового горизонта 30 см. Содержание гумуса больше 4,5 %. Плодородие необходимо поддерживать удобрениями. Экологические условия агроландшафта характеризуются суммами средних температур выше 10 °C до 1600–1800 °C: на равнинах – 1600–1700 °C, на склонах южной экспозиции – 1700–1800 °C. Продолжительность периода занимает западную часть котловины, Балахтинский – восточную, а Кома-Кульчекский размещается па правобережье Енисея.

Ужурский – равнины куэстово-грядовые с балками и оврагами, сложенные терригенно-карбонатными породами, с разнотравно-ковыльными и мелкодерновинными степями на черноземах оподзоленных и обыкновенных и березовыми разнотравно-вейниковыми лесами на серых лесных почвах. Агроландшафт занимает большую часть Ужурского района – территорию от реки Черновка, притока Чулыма, до оз. Белое. Рельеф агроландшафта в северной части холмистосопочный, в южной - холмисто-увалистый. Растительность представлена ассоциациями разнотравноковыльной степи, часто в сочетании с разнотравномелкодерновинными деградированными сообществами. Почвенный покров характеризуется господством черноземов обыкновенных с островками серых лесных почв. Фоновые почвы агроландшафта тяжелого гранулометрического состава. Распаханы преимущественно черноземы, покрывающие равнины и пологие склоны междуречий. Высокопродуктивные почвы занимают 80 % площади агроландшафта, посредственные почвы – 10 % [15].

Балахтинский — равнины, сложенные юрскими и терригенными породами, с лесостепными мелколиственно-сосновыми травяными лесами на серых лесных почвах и полями на выщелоченных и оподзоленных черноземах. Занимает западную половину Балахтинского района. Рельеф неоднородный. Встречаются равнины межкуэстовые с абсолютными высотами 350 м и возвышенные равнины с высотами поверхности 400—450 м.

Климат достаточно теплый и умеренно влажный, ГТК 1,2. За год выпадает 300-400 мм осадков. Сумма активных температур выше 10 °C не превышает 1569 °C. Средняя температура января −22,1 °C, июля 17,5 °C, средняя температура за год -1,9°C. Испарение составляет 267 мм в год. Коэффициент континентальности достигает 88,9. Продолжительность безморозного периода не превышает 90-95 дней. Наибольшая залесенность характерна для низкогорных лесостепных территорий. Почвенный покров характеризуется господством южных бесструктурных малогумусных среднемощных оподзоленных черноземов и выщелоченных черноземов среднегумусных и тучных. Лесистость в целом по агроландшафту достигает 60 %. Леса в основном мелколиственные травяные. Хороших почв с высоким неустойчивым плодородием меньше, чем ниже средних по качеству с невысоким неустойчивым плодородием. Их с температурами выше 10 °C 110-115 дней, безморозного периода -100-105. Сумма осадков за год 400-430 мм, за майиюль – 160–180. Показатель сухости 1,9–1,7. Средняя многолетняя урожайность зерновых культур на госсортоучастках 14–17 ц/га [16].

Агроландшафты Южно-Минусинской впадины. В Южно-Минусинской впадине размещаются четыре

агроландшафта: в юго-западной части — Южно-Минусинский с эрозионно-денудационными равнинами, в северо-западной — Краснотуранский с холмисто-увалистыми равнинами и оврагами, в северо-восточной — Курагино-Идринский с эрозионно-денудационными структурными равнинами, в юго-восточной части — Каратузский с холмисто-увалистыми равнинами [17].

Краснотуранский – холмисто-увалистые равнины с оврагами, сложенные терригенно-карбонатными породами, с разнотравными степями и разнотравнозлаковыми остепненными лугами и сельскохозяйственными угодьями на черноземах выщелоченных, с мелко лиственными и сосновыми остепненными травяными лесами на серых и подзолистых почвах. Занимает котловину между устьями р. Тубы и Сыды и большей частью размещается в Боградском районе. В целом агроландшафт в большей степени степной. Климатические особенности следующие. Годовое количество осадков 400-430 мм, суммы средних суточных температур воздуха выше 10 °C от 1700 до 1800 °C, продолжительность безморозного периода от 90 до 105 дней, коэффициент континентальности 97,5, гидротермический коэффициент 1,5. Средняя температура января достигает -23,2 °C, среднемесячная июля 18,9 °C, среднегодовая -1,6 °C. Лесистость с учетом лесополос не превышает 10 %, распаханность – 55 % от общей площади агроландшафта. Лугов 0,5 % от общей территории, степей – 30. Урожайность зерновых – от 8,5 до 11,8 ц/га [8; 18].

Южно-Минусинский – эрозионно-денудационные структурные межгорные холмисто-увалистые равнины с балками и оврагами, с разнотравно-злаковыми степями и разнотравными лугами на черноземах и мелколиственными и сосновыми травяными лесами на дерново-подзолистых и серых лесных почвах. Агроландшафт размещается в Минусинском и частично в Шушенском и Ермаковском районах. Сложен девонскими породами, занимает наиболее остепненную часть правобережья Южно-Минусинской котловины, расчленен древними ложбинами стока. Сверху агроландшафт сложен желто-палевыми лессами и средними лессовидными суглинками. Агроклиматические ресурсы характеризуются суммой средних суточных температур воздуха выше 10 °C от 1700 до 1900°С. Суммы осадков за год варьируют от 400 до 490 мм. Это свидетельствует о том, что агроландшафт достаточно увлажненный (ГТК 1,3-1,8) [14]. Лесистость агроландшафта составляет 39 %, степей – 10 % от общей площади, распаханность территории агроландшафта 51 %. В целом он является лесостепным. Фон образуют черноземы обыкновенные в сочетании с серыми лесными почвами. Почв, пригодных для выращивания всех сельскохозяйственных культур, 50 % от распаханной территории. Эти почвы занимают равнины и пологие склоны. Мощность гумусового горизонта лучших почв 30 см, содержание гумуса более 6 %. Средние почвы с неустойчивым плодородием встречаются на 10 % площади распаханных земель. Большинство почв незначительно подвержены - эрозии. Среднемноголетняя урожайность зерновых культур в агроландшафте от 10 до 14 ц/га.

Каратузский – равнины холмисто-увалистые, сложенные карбонатными и терригенно-карбонатными - породами, перекрытыми сверху коричневопалевыми лессовидными тяжелыми суглинками и редкими коричнево-бурыми глинами. В агроландшафте преобладают мелколиственные травяные и остепненные леса на серых лесных почвах, разнотравные луговые степи и сельскохозяйственные уголья на черноземах вышелоченных. Большей своей территорией агроландшафт входит в Краснотуранский район и частично - в Идринский. Лесистость в агроландшафте составляет 50 %. Леса мелколиственные травяные и остепненные. Фоновые почвы – черноземы выщелоченные и серые лесные. Средняя урожайность сельскохозяйственных культур 14-16 ц/га. Более 20 % распаханных земель – с ясно выраженным плоскостным и линейным смывом. В агроландшафте около 4 % территории требует мелиоративных противоэрозионных мероприятий. Агроклиматические ресурсы характеризуются суммой средних суточных температур воздуха выше 10 °C от 1700 до 1600 °C, суммой осадков за год 430-550 мм, продолжительностью безморозного периода от 90 до 95 дней. Поздневесенние заморозки возможны до 30 мая, а первые осенние заморозки - с 3 сентября. Средняя температура июля составляет 18,1 °C, января -21,8 °C, среднегодовая -1,2 °C. Гидротермический коэффициент варьирует от 1,8 до 2,2, что свидетельствует об избыточной увлажненности агроландшафта [17].

Курагино-Идринский — это эрозионно-денудационные структурные равнины, сложенные терригенно-карбонатными породами, перекрытыми сверху коричнево-палевыми лессовидными тяжелыми и средними суглинками, с березовыми разнотравно-злаковыми лесами на серых лесных почвах и сельскохозяйственными угодьями на черноземах оподзоленных. Расположен в междуречье рек Туба и Сыда. Южной частью 50 % площади размещается в Курагинском районе, а северной (50 %) — в Идринском. Вытянут относительно узкой полосой от Курагино до Идринского на расстояние до 75 км. Ширина агроландшафта 33 км. Сельским хозяйством он освоен на 75 % площади.

Климатические условия агроландшафта: сумма осадков за год 520 мм, сумма активных температур выше 10 °C составляет 1500-1600°C, продолжительность безморозного периода 85-95 дней. Урожайность зерновых культур 17-16 ц/га. Потенциальная урожайность с учетом продуктивности климата 19,6-20,8 ц/га [9]. Степи разнотравно-злаковые встречаются изредка, в основном они распаханы. Леса преобладают березовые и осиново-березовые остепненные злаково-разнотравные и мелколесья с деградированным разнотравно-мятликовым покровом. Лесистость в агроландшафте не превышает 25 %. Фоновые почвы представлены черноземами оподзоленными и серыми лесными. Лучшие почвы с высоким устойчивым плодородием занимают не более 10 % площади агроландшафта, хорошие почвы с высоким неустойчивым плодородием - до 15 % агроландшафта, остальные почвы средние с невысоким и неустойчивым плодородием. Все эти особенности агроландшафтов определяют специфику земледелия и землеустройства по регионам края.

выводы

Минусинская впадина является местом древнейшей культуры земледелия, животноводства и металлургии. Природные и экологические условия выделенных агроландшафтов благоприятны для производства ранне и среднеспелых сортов сельскохозяйственных культур: яровой пшеницы, озимой ржи, овса, ячменя и корнеклубнеплодов. В агроландшафтах имеются перспективы расширения сельскохозяйственных возможностей в современных условиях. Таким образом, эколого-хозяйственное состояние агралондшафтов характеризуется не только территориальными изменениями экологического каркаса земель, но и факторами, влияющими на формирование особых структур производства (сельскохозяйственных, промышленных, селитибных, рекреационных и др.).

Сочетание экономических, природных и экологических факторов формирует специфическую систему агроприродного комплекса Приенисейской Сибири, которая должна опираться на наиболее прогрессивные программы региональной стратегии, что позволит осуществить комплексное использование всего спектра компонентов агроприродного потенциала региона.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Ершов Ю. И., Москалев А. К. Степень Р. А. Земельные и лесные ресурсы Красноярского края, проблемы их рационального использования. Новосибирск: Изд-во СОРАН 2001. С. 19–27
- 2. Исаченко А. Г. Ландшафтное районирование России как основа для регионального эколого-географического анализа // Изв. РГО. 1996. Т. 128, вып. 5. С. 42–60.
- 3. Николаев В. А. Ландшафтно-географические аспекты изучения и оптимизации территориальной структуры сельскохозяйственных земель // Мелиорация ландшафтов. М.: МФ ГО СССР, 1988. С. 18–30.
- 4. Сочава Б. В. Тайга как тип природной среды // Южная тайга Приангарья. Л., 1969. С. 31–50.
- 5. Иванов К. И. Территориальные системы общественного производства: географические аспекты аграрно-промышленного комплексирования. М.: Мысль, 1975. 269 с.
- 6. Красноярова Б. А. Территориальная организация аграрного природопользования // География и природные ресурсы. 1997. № 2. С. 10–15.
- 7. Красноярский край в цифрах. Красноярск, 2005. С. 10.
- 8. Основы земельного законодательства СССР и союзных республик. М., 1989. 300 с.
- 9. Безруких В. А. Территориальная организация природопользования в условиях Приенисейской Сибири: монография; Краснояр. гос. пед. ун-т им. В. П. Астафьева. Красноярск, 2008. 204 с.
 - 10. Атлас. География России. М.: Дрофа, 2004. 47 с.
- 11. Лысанова Г. И. Ландшафтный анализ аграрного потенциала геосистем. Иркутск : Изд-во Ин-та геогр. СО РАН, 2001. 188 с.

- 12. Безруких В. А. Природные условия юго-восточной части Западной Сибири и Северо-Минусинских впадин // Проблемы использования и охраны природных ресурсов Красноярского края. Вып. 8. Красноярск: КНИГИиМС, 2006. С. 133–143.
- 13. Алькова Е. Н. Опыт применения совмещенных коэффициентов расчлененности для характеристики рельефа природных территорий Алтае-Саянской горной страны // Изв. ВГО, 1975. Т. 107, вып. 4. С. 348–352.
- 14. Агроклиматические ресурсы Красноярского Края и Тувы. Л., 1974. 237 с.
- 15. Безруких В. А. Продуктивность почвенного покрова ландшафтов староосвоенных районов Красноярского края как экономическая предпосылка // Проблемы современной экономики : Евразийский международный научно-аналитический журнал. 2009. № 1 (29). С. 419–424.
- 16. Калеп Л. Л., Литвинова К. Н. К уточнению данных о земельных ресурсах сельскохозяйственной полосы юга Средней Сибири // География и природные ресурсы. 1984. № 8. С. 58–62.
- 17. Сляднев А. П., Сенников В. А. Агроклиматическая характеристика юго-восточной части Западно-Сибирской равнины. Новосибирск, 1972. 170 с.
- 18. О состоянии и охране окружающей среды Красноярского края в 2006 году : Государственный доклад. Красноярск, 2007. 232 с.

REFERENCES

- 1. Ershov Yu. I., Moskalev A. K. Stepen' R. A. Zemel'nye i lesnye resursy Krasnoyarskogo kraya, problemy ih racional'nogo ispol'zovaniya. Novosibirsk: Izd-vo SORAN, 2001. S. 19–27.
- 2. Isachenko A.G. Landshaftnoe rajonirovanie Rossii kak osnova dlya regional'nogo ekologo-geograficheskogo analiza // Izv. RGO. 1996. T. 128, vyp. 5. S. 42–60.
- 3. Nikolaev V. A. Landshaftno-geograficheskie aspekty izucheniya i optimizacii territorial'noj struktury sel'sko-hozyajstvennyh zemel' // Melioraciya landshaftov. M.: MF GO SSSR, 1988. S. 18–30.
- 4. Sochava B. V. Tajga kak tip prirodnoj sredy // Yuzhnaya tajga Priangar'ya. L., 1969. S. 31–50.
- 5. Ivanov K. I. Territorial'nye sistemy obshchestvennogo proizvodstva: geograficheskie aspekty agrarno-

- promyshlennogo kompleksirovaniya. M.: Mysl', 1975. 269 s
- 6. Krasnoyarova B. A. Territorial'naya organizaciya agrarnogo prirodopol'zovaniya // Geografiya i prirodnye resursy. 1997. № 2. S.10–15.
- 7. Krasnoyarskij kraj v cifrah. Krasnoyarsk. 2005. S. 10.
- 8. Osnovy zemel'nogo zakonodatel'stva SSSR i soyuznyh respublik. M., 1989. 300 s.
- 9. Bezrukih V. A. Territorial'naya organizaciya prirodopol'zovaniya v usloviyah Prienisejskoj Sibiri : monografiya; Krasnoyar.gos.ped.un-t im. V. P. Astaf'eva. Krasnoyarsk, 2008. 204 s.
 - 10. Atlas. Geografiya Rossii. M.: Drofa, 2004. 47 s
- 11. Lysanova G. I. Landshaftnyj analiz agrarnogo potenciala geosistem. Irkutsk : Izd-vo In-ta geogr. SO RAN, 2001, 188 s.
- 12. Bezrukih V. A. Prirodnye usloviya yugovostochnoj chasti Zapadnoj Sibiri i Severo-Minusinskih vpadin // Problemy ispol'zovaniya i ohrany prirodnyh resursov Krasnoyarskogo kraya. Vyp. 8. Krasnoyarsk: KNIGIiMS. 2006. S. 133–143.
- 13. Al'kova E. N. Opyt primeneniya sovmeshchennyh koefficientov raschlenennosti dlya harakteristiki rel'efa prirodnyh territorij Altae-Sayanskoj gornoj strany // Izv. VGO, 1975. T. 107, vyp. 4. S. 348–352.
- 14. Agroklimaticheskie resursy Krasnoyarskogo Kraya i Tuvy. L., 1974. 237s.
- 15. Bezrukih V. A. Produktivnost' pochvennogo pokrova landshaftov staroosvoennyh rajonov Krasno-yarskogo kraya kak ekonomicheskaya predposylka // Problemy sovremennoj ekonomiki : Evrazijskij mezhdunarodnyj nauchno-analiticheskij zhurnal. 2009. № 1 (29). S. 419–424.
- 16. Kalep L. L., Litvinova K. N. K utochneniyu dannyh o zemel'nyh resursah sel'skohozyajstvennoj polosy yuga Srednej Sibiri // Geografiya i prirodnye resursy. 1984. № 8. S. 58–62.
- 17. Slyadnev A. P., Sennikov V. A. Agroklimaticheskaya harakteristika yugo-vostochnoj chasti Zapadno-Sibirskoj ravniny. Novosibirsk, 1972. 170 s.
- 18. O sostoyanii i ohrane okruzhayushchej sredy Krasnoyarskogo kraya v 2006 godu : Gosudarstvennyj doklad. Krasnoyarsk, 2007. 232 s.
 - © Безруких В. А., Авдеева Е. В., Цыганкова Н. В., Лигаева Н. А., Кузнецова О. А., 2025

Поступила в редакцию 18.03.2025 Принята к печати 20.05.2025